

DESIGN AND TECHNOLOGY – MATHS TIME LINE Year 7.

Unc	lerst	and	and	be a	ble t	0 CO	nver	t cm	s to ı	mms	•						
To b	be at	ole to	o me	asur	e ac	cura	tely,	in bo	oth c	ms a	ind r	nms.					
		ang rees		accur	ately	y and	d to r	eco	gnise	e 30/-	45/6	0/90/	/180	and			
To k	be at	ole to	o ide	ntify gon,	-							quare	es,				
Be a	able	to d	raw a	accu	ratel	y, fol	lowi	ng di	imen	-		neas	uren	nents			
Το ι	inde	rstai	nd ar	ed un nd ap						ter. L	Jnde	rstar	nd th	e tei	m		
		ereno ole c		ate t	otals	s and	l to v	vork	out	the 'r	neai	n' av	erad	е.			
															0		
			c wo nnolc			iersta	andii	ng oi	r wei	gnts	and	mea	isure	es (⊢	.G.		
outp	out) 1	hrou	igh t		se o	fmic	ropr					out, p ising					

DESIGN AND TECHNOLOGY – MATHS TIME LINE Year 8. In addition to Year 7

Ве	able	to ca	alcul	ate a	areas	5.											
	otal istics		' cha	arts, a	as u	sed i	n qu	estic	onna	ires	and	wher	ר col	lecti	ng		
	able sons	to p	rodu	ce si	mple	e gra	phs	from	data	a col	lecte	ed du	iring				
Bea	able	to dr	aw c	omm	ion g	eom	etric	alsh	ape	sacc	urat	ely.					
	d on hnol			lge c	of we	ights	s and	l me	asur	es (f	E.G.	Foo	d				
Use	e terr	plat	es / j	oatte	rns t	o ac	cura	tely	marł	k out	and	mar	nufac	cture			
Use	e a co	omb	natio	on of	mea	asuri	ng a	nd n	narki	ng o	ut sk	cills.					
sen		, swi			nple roug										rol		

DESIGN AND TECHNOLOGY – MATHS TIME LINE Year 9. In addition to Years 7 and 8

Re	able	to ca	alcul	ate v	olun	าคร											
00			aroun		oran	100											
_																	
Be	able	to ca	alcula	ate p	erce	entag	jes										
To	apply	, sca	le to	drav	wina	2											
10.0	арріу	300		ura	wing.	5											
Use	e ratio	os ar	nd pe	ercei	ntage	es.											
					-												
1 Inc	lerst	and	tocc	llati	one	and	how	offic	iont	docid	nne d	oon k	o ha	he od	on		
		anu	16226	ellati		anu	now	enic		าคอเด	jiis c			iseu	011		
the	n .																
Det	ermi	ne a	ngula	ar m	easu	res	in de	gree	s (E	.G. ι	Ising	a p	rotra	ctor			
	urate		5					0	,		J						
acc	urac	<i>, iy j</i> .															
De		باء ما		, la al v				1			:		h a la				
	able			and r	таке	e ten	npiat	es /	patte	erns i	o ai	d bai	ICN				
mai	nufac	cture															
To t	be at	ole to	o cor	trol	micro	opro	cess	or ci	rcuit	s (m	anuf	actu	red i	n cla	ss		
	. Ge																
		-	nogi	anni	labit		Juito	, usi	ng c	oue	anu		JOIN	01			
soft	ware).															
						<u> </u>		<i>c</i>									
	nave				nding	of t	asic	forn	nulas	s, as	use	d in e	elect	ronic	S		
(E.C	G. Oł	nms	Law)													
`																	
Tot	be at	le tr	cal	culat	e sin	nple	mon	nent	s of f	orce	and	ean	ilihri	um			
			Jun	Jaiat	5 011	סוקיי		10110		5.00	and	540					
- .		1 .	(<i>c</i>	•.	~	05			
To b	be at	ole to) 'ge	ome	trical	ly' id	entif	y the	e cer	itre ¢	ot gra	avity	ot a	2D			
sha	pe.																
R۵	ahla	to w	ork	nit e	imple		ar ra	tine	for e	ามา ด	oarc						
						1 U U	นเปล	นบอ	0 3	JULY	U C I J						
	anc				p.	90				Ĭ							
	abie				pr	90											
	abie					90											

FIRST DRAFT

DESIGN AND TECHNOLOGY – MATHS TIME LINE KS 4. In addition to Years 7, 8 and 9

					_											 	
Ariti	hme	tic a	and	Num	eric	al Pi	roble	em S	Solvi	ng						 	
	bla	to or		oto c		litico	of p	actor	riolo	000	0.00	d ai-					
				ate c	•						s an	a siz	zes.				
				ate r													
				appl draw							winc					 	_
				ults o						j ula	wing	JS.				 	
				and v			man	63.								 	
Calc	Julat				loiui	103.											
Data	a Ha	ndli	ng a	and F	Prac	tical	App	olica	tion							 	
	blo	to n		ntati	on de	ato ir	the	form	n of	diagu	omo	nio	toar	mo			
				ntatio narts						ulayi	ams	, pic	logia	anis,			
				ce fr						o in	form	atior	ten	horo	Ч		
				e sol	•						UIII	alloi	i yai		u		
	sip c			5 301	ution	3 10	ucsi	gri p		51113.						 	
Gra	ohic	al P	rese	entat	ion												
Be a	ble	to d	aw	a ran	ge o	f gra	phs	from	dat	a / s	tatist	ics.					
				he fo													
Be a	ble	to co	onve	ert inf	orma	ation	and	data	a fro	m sta	atisti	cal f	orm	0			
				∕ise ∖												 	_
				e tecl												 	
				vhen		lising	g pro	duct	s, m	akin	g ch	oice	s and	1			
dete	rmir	ning	a de	sign	-												
Geo	met	rv a	nd 1	rigo	nom	netrv	,									 	
To d	eter	mine	an	gular	mea	asure	es, ir	deo	grees	S.							
				asur													_
				tes						-		tem	blate	or a		 	
				Prod		-											
				in 2D			bot	h by	hand	d and	d usi	ng C	AD.				
To b	e ab	ole to	o pre	sent	des	gns	in ar	n un	derst	anda	able,	star	ndaro	dised	k l		
form	(E.	G. s	cale	d wo	rking	dra	wing	s)									
To b	e ab	le to	o cal	culat	e the	e are	as a	nd v	olun	nes a	ind c	ons	eque	ntly,			_
he c	quar	ntity	of m	ateri	al re	quire	ed, fo	or the	e ma	nufa	cture	e of a	a pro	duct			

FIRST DRAFT

CALCULATING THE AREA OF A SQUARE

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

Definition: A square has four sides, with each being equal in length. Each of the four internal angles are right angles, 90 degrees.

CALCULATING THE AREA OF A SQUARE

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

Definition: A square has four sides, with each being equal in length. Each of the four internal angles are right angles, 90 degrees.

SAMPLE QUESTIONS

AREA OF A SQUARE - EXAMINATION QUESTION

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/

A plywood panel for a cabinet is seen below.

1. Calculate the area of the plywood required, before it is cut to shape (the overall square of plywood required, before it is cut to an L shape).

First, calculate the area of the uncut plywood, by treating it as a square 500mm x 500mm.

AREA = LENGTH OF SIDE X LENGTH OF SIDE AREA = 500 X 500 AREA = 250000mm²

Now, calculate the area of the smaller piece to be cut away, during the shaping of the panel

AREA = LENGTH OF SIDE X LENGTH OF SIDE AREA = 250 X 250 AREA = 62500mm²

Now subtract the smaller area from the area of the uncut plywood.

250000 - 62500 = 187500

AREA OF FINAL SHAPED PIECE IS 187500mm²

AREA OF A SQUARE - EXAMINATION QUESTION

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

A plywood panel for a cabinet is seen below.

1. Calculate the area of the plywood required, before it is cut to shape (the overall square of plywood required, before it is cut to an L shape).

AREA OF A SQUARE - EXAMINATION QUESTION TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

An acrylic window for a school project seen below, is composed of two pieces, accurately cut to size on a laser cutter. They fit perfectly together.

- 1. Calculate the area of piece A
- 2. Calculate the area of piece. B

First, calculate the entire area of 'A', without the centre piece being removed, by treating it as a square 400mm x 400mm.

AREA = LENGTH OF SIDE X LENGTH OF SIDE AREA = 400 X 400 AREA = 160000mm²

Now, calculate the area of the smaller piece 'B', which is also the size of the piece to be removed from 'A'.

AREA = LENGTH OF SIDE X LENGTH OF SIDE AREA = 200 X 200 AREA = 40000mm²

Now subtract the smaller area 'B' from the area of 'A'. The answer will be the area of 'A' with it's central window of material removed.

160000 - 40000 = 120000mm²

AREA OF FINAL SHAPED PIECE 'A' WITHOUT CENTRAL PIECE IS 120000mm² AREA OF PIECE 'B' IS 40000mm²

AREA OF A SQUARE - EXAMINATION QUESTION

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017 An acrylic window for a school project seen below, is composed of two pieces, accurately cut to size on a laser cutter. They fit perfectly together.

- 1. Calculate the area of piece A
- 2. Calculate the area of piece. B

MATHEMATICAL SKILLS

AREA OF A RECTANGLE AND **ASSOCIATED EXAMINATION QUESTIONS**

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/

www.technologystudent.com © 2017 V.Ryan © 2017

DESIGN AND TECHNOLOGY

NOT FOR SALE OR REDISTRIBUTION

THIS MATERIAL CANNOT BE EDITED OR PLACED ON ANY OTHER FORM OF MEDIA, INCLUDING POWERPOINTS, INTRANETS, WEBSITES ETC...

www.technologystudent.com © 2017 V.Ryan © 2017 WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/

CALCULATING THE AREA OF A RECTANGLE

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

Definition: A rectangle has four sides, with the opposite sides being the same length and parallel. Each of the four internal angles are right angles, 90 degrees.

FORMULA

AREA = X multiplied by Y AREA =LENGTH x HEIGHT

SAMPLE QUESTIONS

90mm

Calculate the area of the rectangle shown opposite.

AREA = X multiplied by Y

AREA = 100mm x 50mm

 $AREA = 5000 mm^2$

AREA = X multiplied by Y

 $AREA = 90mm \times 60mm$

AREA = 5400mm²

AREA = 11475mm²

CALCULATING THE AREA OF A SQUARE

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

Definition: A rectangle has four sides, with the opposite sides being the same length and parallel. Each of the four internal angles are right angles, 90 degrees.

FORMULA

AREA = X multiplied by Y AREA =LENGTH x HEIGHT

SAMPLE QUESTIONS

Calculate the area of the rectangle shown opposite.

Calculate the area of the rectangle shown opposite.

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/

www.technologystudent.com © 2017 V.Ryan © 2017

An acrylic panel for a storage unit is seen below.

1. Calculate the area of the acrylic required, before it is cut to shape (the overall rectangle of acrylic required, before it is cut to an L shape).

2. Calculate the area of the final L shape.

First, calculate the area of the uncut acrylic, by treating it as a rectangle 500mm x 400mm.

AREA = LENGTH X HEIGHT AREA = 500 X 400 AREA = 200000mm²

Now, calculate the area of the smaller rectangular piece to be cut away, during the shaping of the panel

AREA = LENGTH X HEIGHT AREA = 250 X 200 AREA = 50000mm²

Now subtract the smaller area from the area of the uncut plywood.

200000 - 50000 = 150000

AREA OF FINAL SHAPED PIECE IS 150000mm²

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

An acrylic panel for a storage unit is seen below.

1. Calculate the area of the acrylic required, before it is cut to shape (the overall rectangle of acrylic required, before it is cut to an L shape).

2. Calculate the area of the final L shape.

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

A rectangular acrylic window for an Art project seen below, is composed of two rectangular pieces, accurately cut to size on a laser cutter. They fit perfectly together.

- 1. Calculate the area of piece A
- 2. Calculate the area of piece. B

First, calculate the entire area of 'A', without the smaller piece being removed, by treating it as a rectangle 400mm x 300mm.

AREA = LENGTH X HEIGHT AREA = 400 X 300 AREA = 120000mm²

Now, calculate the area of the smaller rectangular piece 'B', which is also the size of the piece to be removed from 'A'.

AREA = LENGTH X HEIGHT AREA = 200 X 150 AREA = 30000mm²

Now subtract the smaller rectangular area 'B' from the total area of rectangle 'A'. The answer will be the area of 'A', with the smaller rectangle of waste acrylic being removed.

120000 - 30000 = 90000mm²

AREA OF FINAL SHAPED PIECE 'A' WITHOUT THE SMALLER PIECE IS 90000mm²

AREA OF PIECE 'B' IS 30000mm²

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017 A rectangular acrylic window for an Art project seen below, is composed of two rectangular pieces, accurately cut to size on a laser cutter. They fit perfectly together.

- 1. Calculate the area of piece A
- 2. Calculate the area of piece. B

CALCULATING THE AREA OF A CIRCLE GIVEN THE RADIUS V.Ryan © 2017

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/

Definition: A precise curve around a centre. Any point on the curve is an equal distance from the centre. A circle is composed of a circumference (the precise curve) and a diameter and radius.

FORMULA

AREA = πr^2

SAMPLE QUESTIONS

A circle has a radius of 100mm. What is the area of the circle?	AREA = πr ²	π (pi) = 3.14				
	AREA = 3.14 x	(100 x 100)				
	AREA = 3.14 x	(10000)				
	AREA = 31400r	nm²				
A circle has a radius of 60mm. What is	AREA = πr²	π (pi) = 3.14				
the area of the circle?	AREA = 3.14 x (60 x 60)					
	AREA = 3.14 x (3600)					
	AREA = 11304r	nm²				
A circle has a radius of 80mm. What is the area of the circle?	AREA = πr²	π (pi) = 3.14				
	AREA = 3.14 x (80 x 80)					
	AREA = 3.14 x	(6400)				
	AREA = 20096r	nm²				

A circle has a radius of 30mm. What is the area of the circle? A REA = πr^2 π (pi) = 3.14 AREA = 3.14 x (30 x 30) AREA = 3.14 x (900) AREA = 2826mm ² A circle has a radius of 40mm. What is the area of the circle? The true of the circle?
AREA = $3.14 \times (30 \times 30)$ AREA = $3.14 \times (900)$ AREA = 2826 mm ² A circle has a radius of 40mm. What is AREA = $\pi r^2 = \pi (pi) = 3.14$
AREA = 2826 mm ² A circle has a radius of 40mm. What is AREA = $\pi r^2 = \pi$ (pi) = 3.14
A circle has a radius of 40mm. What is $AREA = \pi r^2 = \pi (pi) = 3.14$
Ine area of the circle (
AREA = $3.14 \times (40 \times 40)$
AREA = 3.14 x (1600)
AREA = 5024mm ²
WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017
A circle has a radius of 75mm. What is $AREA = \pi r^2 \pi (pi) = 3.14$ the area of the circle?
AREA = 3.14 x (75 x 75)
AREA = 3.14 x (5625)
AREA = 17662.5mm ²
A circle has a radius of 45mm. What is $AREA = \pi r^2 = \pi (pi) = 3.14$
the area of the circle? $AREA = 3.14 \times (45 \times 45)$
AREA = 3.14 x (2025)
AREA = 6358.5mm ²
A circle has a radius of 90mm. What is $AREA = \pi r^2 \pi (pi) = 3.14$
the area of the circle? $AREA = 3.14 \times (90 \times 90)$
AREA = 3.14 x (8100)
AREA = 25434mm ²

CALCULATING THE AREA OF A CIRCLE GIVEN THE RADIUS

V.Ryan © 2017

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/

Definition: A precise curve around a centre. Any point on the curve is an equal distance from the centre. A circle is composed of a circumference (the precise curve) and a diameter and radius.

	<u>E - SAMPLE QUESTIONS</u> www.technologystudent.com © 2017 V.Ryan © 2017 V.Ryan © 2017
A circle has a radius of 30mm. What is the area of the circle?	AREA = πr ² π (pi) = 3.14
A circle has a radius of 40mm. What is the area of the circle?	AREA = πr ² π (pi) = 3.14
WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebo A circle has a radius of 75mm. What is the area of the circle?	ook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017 $AREA = \pi r^{2} \qquad \pi (pi) = 3.14$
A circle has a radius of 45mm. What is the area of the circle?	AREA = πr ² π (pi) = 3.14
A circle has a radius of 90mm. What is the area of the circle?	AREA = πr ² π (pi) = 3.14

CALCULATING THE CIRCUMFERENCE OF A CIRCLE GIVEN THE RADIUS

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

Definition: The circumference of a circle is the measurement of the boundary, all the way round, 360 degrees.

RADIUS () SECTOR DIAMETER (d)	FORMULA CIRCUMFERENCE = 2 x π x r π (pi) = 3.14
SAMPLI	E QUESTIONS
A circle has a radius of 100mm. What is the circumference?	CIRCUMFERENCE = $2 \times \pi \times r$ C = $2 \times \pi \times r$ C = $2 \times 3.14 \times 100$ C = $628mm$
A circle has a radius of 60mm. What is the circumference?	CIRCUMFERENCE = $2 \times \pi \times r$ C = $2 \times \pi \times r$ C = $2 \times 3.14 \times 60$ C = 376.8 mm
A circle has a radius of 80mm. What is the circumference?	CIRCUMFERENCE = $2 \times \pi \times r$ C = $2 \times \pi \times r$ C = $2 \times 3.14 \times 80$ C = 502.4mm

	- SAMPLE QUESTIONS
A circle has a radius of 30mm. What is the circumference?	CIRCUMFERENCE = $2 \times \pi \times r$ $C = 2 \times \pi \times r$ $C = 2 \times 3.14 \times 30$ C = 188.4mm
A circle has a radius of 40mm. What is the circumference?	CIRCUMFERENCE = $2 \times \pi \times r$ C = $2 \times \pi \times r$ C = $2 \times 3.14 \times 40$ C = 251.2 mm
A circle has a radius of 75mm. What is the circumference?	CIRCUMFERENCE = $2 \times \pi \times r$ C = $2 \times \pi \times r$ C = $2 \times 3.14 \times 75$ C = $471mm$
A circle has a radius of 45mm. What is the circumference?	CIRCUMFERENCE = $2 \times \pi \times r$ C = $2 \times \pi \times r$ C = $2 \times 3.14 \times 45$ C = 282.6 mm
A circle has a radius of 90mm. What is the circumference?	CIRCUMFERENCE = $2 \times \pi \times r$ C = $2 \times \pi \times r$ C = $2 \times 3.14 \times 90$ C = 565.2mm

CALCULATING THE CIRCUMFERENCE OF A CIRCLE GIVEN THE RADIUS

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

Definition: The circumference of a circle is the measurement of the boundary, all the way round, 360 degrees.

CIRCU	
RADIUS (C) SECTOR FR	FORMULA
RADIUS CO SECTOR FILCE	CIRCUMFERENCE = 2 x π x r
DIAMETER (d)	π (pi) = 3.14
SEGMENT	
SAMPL	E QUESTIONS
A circle has a radius of 100mm. What is the circumference?	CIRCUMFERENCE = $2 \times \pi \times r$
A circle has a radius of 60mm. What is the circumference?	CIRCUMFERENCE = 2 x π x r
A circle has a radius of 80mm. What is the circumference?	CIRCUMFERENCE = 2 x π x r
-	
· ·	

	DE - SAMPLE QUESTIONS book.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017
A circle has a radius of 30mm. What is the circumference?	CIRCUMFERENCE = 2 x π x r
A circle has a radius of 40mm. What is the circumference?	CIRCUMFERENCE = 2 x π x r
A circle has a radius of 75mm. What is the circumference?	CIRCUMFERENCE = 2 x π x r
A circle has a radius of 45mm. What is the circumference?	CIRCUMFERENCE = 2 x π x r
A circle has a radius of 90mm. What is the circumference?	CIRCUMFERENCE = 2 x π x r

The round section mild steel bar seen opposite, has a radius of 65mm.

What is the area of the 'circle' at one end?

What is the circumference of the round section bar?

FORMULA

CIRCUMFERENCE = $2 \times \pi \times r$

 π (pi) = 3.14

 $C = 2 \times \pi \times r$

C = 408.2 mm

 $C = 2 \times 3.14 \times 65$

FORMULA

AREA = πr^2

π (pi) = 3.14

$$AREA = 3.14 \times (65 \times 65)$$

AREA = 3.14 x (4225)

AREA = 13266.5mm²

The round section mild steel bar seen opposite, has a radius of 110mm.

What is the area of the 'circle' at one end?

What is the circumference of the round section bar?

FORMULA

CIRCUMFERENCE = $2 \times \pi \times r$

 π (pi) = 3.14

 $C = 2 \times \pi \times r$

C = 690.8 mm

 $C = 2 \times 3.14 \times 110$

FORMULA

 $AREA = \pi r^2$

π (pi) = 3.14

 $AREA = 3.14 \times (110 \times 110)$

AREA = 3.14 x (12100)

AREA = 37994mm²

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS

CIRCLE AREA AND CIRCUMFERENCE EXAMINATION QUESTIONS

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

A student is trying to work the ergonomic dimensions (measurements) for the 'round' handle of a machine vice, that he intends to manufacture. The student measures the radius of the handle of an existing handle and finds it to be 25mm.

What is the circumference of the handle? What is the area of the 'round' end of the handle?

FORMULA

AREA = πr^2

 π (pi) = 3.14

$$AREA = 3.14 \times (25 \times 25)$$

 $AREA = 3.14 \times (625)$

AREA = 1962.5mm²

	RADIUS
HANDLE 1	20
HANDLE 2	25
HANDLE 3	24
HANDLE 4	30
HANDLE 5	28
TOTAL	127
AVERAGE	25.4mm

FORMULA

CIRCUMFERENCE = $2 \times \pi \times r$

 π (pi) = 3.14

$$C = 2 \times \pi \times r$$

 $C = 2 \times 3.14 \times 25$
 $C = 157mm$

The student collects the radius measurements of five machine vices and enters the data into a table of results, seen opposite.

Calculate the average radius and enter your result in the table

Why could this measurement be useful when designing a new machine vice, based on the design above?

The measurement could be applied to the new design of the machine vice handle. Using the average radius measurement should mean that the handle is a good ergonomic 'fit' for the majority of users.

CIRCLE AREA AND CIRCUMFERENCE EXAMINATION QUESTIONS

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS

The round section mild steel bar seen opposite, has a radius of 65mm.

What is the area of the 'circle' at one end?

What is the circumference of the round section bar?

FORMULA

AREA =
$$\pi r^2$$

π (pi) = 3.14

FORMULA

CIRCUMFERENCE = $2 \times \pi \times r$

π (pi) = 3.14

The round section mild steel bar seen opposite, has a radius of 110mm.

What is the area of the 'circle' at one end?

What is the circumference of the round section bar?

FORMULA

$$AREA = \pi r^2$$

π (pi) = 3.14

CIRCUMFERENCE = $2 \times \pi \times r$

π (pi) = 3.14

CIRCLE AREA AND CIRCUMFERENCE EXAMINATION QUESTIONS

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 201

A student is trying to work the ergonomic dimensions (measurements) for the 'round' handle of a machine vice, that he intends to manufacture. The student measures the radius of the handle of an existing handle and finds it to be 25mm.

What is the circumference of the handle? What is the area of the 'round' end of the handle?

FORMULA

AREA =
$$\pi r^2$$

 π (pi) = 3.14

FORMULA

CIRCUMFERENCE = $2 \times \pi \times r$

 π (pi) = 3.14

	RADIUS
HANDLE 1	20
HANDLE 2	25
HANDLE 3	24
HANDLE 4	30
HANDLE 5	28
TOTAL	127
AVERAGE	25.4mm

The student collects the radius measurements of five machine vices and enters the data into a table of results, seen opposite.

Calculate the average radius and enter your result in the table

Why could this measurement be useful when designing a new machine vice, based on the design above?

Treat the surface at the end of the tube as two circles and find the area of each one:

EXTERNAL DIAMETERINTERNAL DIAMETERAREA = πr^2 AREA = πr^2 AREA = $3.14 \times (60 \times 60)$ AREA = $3.14 \times (45 \times 45)$ AREA = $3.14 \times (3600)$ AREA = $3.14 \times (2025)$ AREA = 11304mm^2 AREA = 6358.5mm^2

Then, subtract the area of the internal circle from the area of the external circle, to find the total surface area of the tube.

EXTERNAL CIRCLE 11304mm²

INTERNAL CIRCLE 6358.5mm²

11304 - 6358.5 = 4945.5mm²

The total surface area of one end of the tube is $4945.5 mm^2$

CIRCLE AREA AND CIRCUMFERENCE EXAMINATION QUESTIONS WORLD ASSOCIATION OF TECHNOLOGY TEACHERS INTERNAL DIA = 90mm A piece of steel tube can be seen opposite. The external and internal diameters can be read from the diagram. What is the area of the surface at one end of the steel? **EXTERNAL**DIA = 120mm **EXTERNAL**DIA = 120mm

Treat the surface at the end of the tube as two circles and find the area of each one:

Then, subtract the area of the internal circle from the area of the external circle, to find the total surface area of the tube.

The total surface area of one end of the tube is _____

MATHEMATICAL SKILLS

AREA OF A TRIANGLE AND ASSOCIATED EXAMINATION QUESTIONS

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS

https://www.facebook.com/groups/254963448192823/

www.technologystudent.com © 2017 V.Ryan © 2017

DESIGN AND TECHNOLOGY

NOT FOR SALE OR REDISTRIBUTION

THIS MATERIAL CANNOT BE EDITED OR PLACED ON ANY OTHER FORM OF MEDIA, INCLUDING POWERPOINTS, INTRANETS, WEBSITES ETC...

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

CALCULATING THE AREA OF A TRIANGLE

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

Definition: A triangle can be regarded as a polygon with three sides.

A	FORMULA
h	AREA = 1/2 X BASE X HEIGHT AREA = 1/2 b x h AREA = $\frac{b x h}{2}$
b SAMPLE 0	QUESTIONS
A triangle has a base of 60mm and a height of 80mm	AREA = 1/2 X BASE X HEIGHT AREA = $\frac{60 \times 80}{2}$ AREA = $\frac{4800}{2}$ AREA = 2400mm ²
A triangle has a base of 40mm and a height of 50mm	AREA = 1/2 X BASE X HEIGHT AREA = $\frac{40 \times 50}{2}$ AREA = $\frac{2000}{2}$ AREA = 1000mm ²
A triangle has a base of 70mm and a height of 90mm	AREA = 1/2 X BASE X HEIGHT AREA = $\frac{70 \times 90}{2}$ AREA = $\frac{6300}{2}$ AREA = 3150mm ²

A triangle has a base of 100mm and a height of 120mm	AREA = 1/2 X BASE X HEIGHT AREA = $\frac{100 \times 120}{2}$ AREA = $\frac{12000}{2}$ AREA = 6000 mm ²
A triangle has a base of 75mm and a height of 50mm	AREA = 1/2 X BASE X HEIGHT AREA = $\frac{75 \times 50}{2}$ AREA = $\frac{3750}{2}$ AREA = 1875mm ²
A triangle has a base of 45mm and a height of 55mm	AREA = 1/2 X BASE X HEIGHT AREA = $\frac{45 \times 55}{2}$ AREA = $\frac{2475}{2}$ AREA = 1237.5mm ²
A triangle has a base of 110mm and a height of 130mm	AREA = 1/2 X BASE X HEIGHT AREA = $\frac{110 \times 130}{2}$ AREA = $\frac{14300}{2}$ AREA = 7150mm ²
A triangle has a base of 300mm and a height of 400mm	AREA = $\frac{1}{2} \times BASE \times HEIGHT$ AREA = $\frac{300 \times 400}{2}$ AREA = $\frac{120000}{2}$ AREA = $\frac{60000}{2}$

CALCULATING THE AREA OF A TRIANGLE

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

Definition: A triangle can be regarded as a polygon with three sides.

A triangle has a base of 40mm and a height of 50mm

AREA = 1/2 X BASE X HEIGHT

A triangle has a base of 70mm and a height of 90mm

AREA = 1/2 X BASE X HEIGHT

A triangle has a base of 100mm and a height of 120mm

AREA = 1/2 X BASE X HEIGHT

A triangle has a base of 75mm and a height of 50mm

AREA = 1/2 X BASE X HEIGHT

A triangle has a base of 45mm and a height of 55mm

AREA = 1/2 X BASE X HEIGHT

A triangle has a base of 110mm and a height of 130mm

AREA = 1/2 X BASE X HEIGHT

A triangle has a base of 300mm and a height of 400mm

AREA = 1/2 X BASE X HEIGHT

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/

FORMULA - REMAINS THE SAME

AREA = 1/2 X BASE X HEIGHT
AREA = 1/2 b x h
AREA =
$$\frac{b x h}{2}$$

AREA = 1/2 X BASE X HEIGHT

AREA =
$$\frac{600 \times 800}{2}$$

AREA =
$$\frac{480000}{2}$$

$$AREA = 240000 mm^{2}$$

PRACTICAL EXERCISE:

Cut a number of obtuse triangles from 'brown' box cardboard.

Then calculate the areas of each triangle, using a plumb line to work out the height.

PRACTICAL QUESTIONS

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

Measure the height of each cardboard obtuse triangle, with the aid of a plumb line. Then, use the formula AREA = 1/2 X BASE X HEIGHT, to calculate each area.

CARDBOARD TRIANGLE 1

AREA = 1/2 X BASE X HEIGHT

HEIGHT=

CARDBOARD TRIANGLE 1

AREA = 1/2 X BASE X HEIGHT

BASE=

HEIGHT=

CARDBOARD TRIANGLE 1

AREA = 1/2 X BASE X HEIGHT

BASE=

HEIGHT=

CARDBOARD TRIANGLE 1

AREA = 1/2 X BASE X HEIGHT

BASE=

HEIGHT=

CARDBOARD TRIANGLE 1

AREA = 1/2 X BASE X HEIGHT

BASE=

HEIGHT=

MATHEMATICAL SKILLS

MOMENTS OF FORCE (RATIOS) AND EQUILIBRIUM

AND

ASSOCIATED EXAMINATION QUESTIONS

For animations to help explain Moments of Force and Equilibrium and questions and answers go to:

http://www.technologystudent.com/forcmom/force2.htm

For a PRACTICAL PROJECT on Equilibrium go to:

http://www.technologystudent.com/forcmom/cengrav1.html

and

http://www.technologystudent.com/forcmom/balance1.html

https://www.facebook.com/groups/254963448192823/

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS

www.technologystudent.com © 2017 V.Ryan © 2017

MOMENTS OF FORCE AND EQUILIBRIUM

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

The diagram below clearly shows a state of equilibrium. The cars on either side of the seesaw are exactly the same in weight and height, in fact they are the same model. As a result, the seesaw stays level. The centre of the seesaw is called the 'fulcrum', seen here as a triangle and this is where the beam, that the cars rest on, tilts backwards and forwards. However, because of the state of equilibrium, they remain completely still.

The weight of the cars is called the effort.

The cars are in a 'state of equilibrium' because the weight, on either side, is exactly the same. The distance from each car to the fulcrum, is also the same.

If an extra car is added to the right hand side (see diagram below), then the seesaw will turn in a clockwise direction - called a clockwise moment.

Alternatively, if more cars are added to the left hand side, the seesaw will turn in an anticlockwise direction - called an anticlockwise moment.

A clockwise moment, as an extra car is added to the right side

If the seesaw is to be in equilibrium, the clockwise moments must be equal to the anticlockwise moments. The seesaw is back in 'equilibrium' because a second car has been added to the left hand side, as well.

A state of equilibrium is also seen below. Each of the cars weighs the same (1 Tonne). Despite the fact that there is only one car on the left-hand side, the moments balance because, the car on the left-hand side, is twice the distance from the fulcrum, compared to the cars on the right-hand side. (see the calculation below).

STATE OF EQUILIBRIUM

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://w

https://www.facebook.com/groups/254963448192823/

www.technologystudent.com © 2017 V.Ryan © 2017

A state of equilibrium exists below. The single car on the left, balances the three cars on the right-hand side. This is because, the single car is three times the distance from the fulcrum, compared to the three cars on the right-hand side. Both sides of the fulcrum balance.

EXAMINATION QUESTION - MOMENTS OF FORCE AND EQUILIBRIUM

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

1. What is equilibrium? To answer this question you must complete the diagram below, clearly demonstrating 'equilibrium' and add explanatory notes.

What is the fulcrum?

Explain why the diagram below shows a state of equilibrium, especially as there appears to be an imbalance of two cars on the right, to one car on the left. You will need to include the correct calculation and notes in your answer.

EXAMPLE EXAMINATION QUESTIONS AND ANSWERS

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/

www.technologystudent.com © 2017 V.Ryan © 2017

1. The diagram below shows a lever where an effort of 200 N balances a load of 600 N. The effort force is 6 metres from the fulcrum. The load force is two metres from the fulcrum.

2. In the diagram below a crow-bar is used to move a 400n load. What effort is required to move the load?

EXAMPLE EXAMINATION QUESTIONS

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.tec

www.technologystudent.com © 2017 V.Ryan © 2017

1. The diagram below shows a lever, where an effort of 200 N balances a load of 600 N. Show how this is correct, by calculating the clockwise and anticlockwise moments.

2. In the diagram below, a crow-bar is used to move a 400n load. What effort is required to move the load?

Anticlockwise moments = effort x 6m
In equilibrium;
clockwise moments = anti-clockwise moments
$$120 \times 2 = effort \times 6$$

effort = $\underline{120 \times 2}$
6

An effort of over **40 N** is required to move the load.

An effort of over **50 N** is required to lift the wheel-barrow.

EXA	MPLE EXAMINATION QUE	
3. Another crow-bar is used to lever a load of 120N. The load	CHERS https://www.facebook.com/groups/254963448192823/	www.technologystudent.com © 2017 V.Ryan © 2017
is 2m from the fulcrum and the effort is 6m from the fulcrum. What effort is required to move	<	><
the load?	EFFORT	LOAD
	Crow bar lever	120 N
4. A wheel-barrow is used to	1M	0.5M
lift a load of 150N. The wheel acts as the fulcrum. Calculate		

the effort required.

EFFORT LOAD Wheel-barrow lever 150 N

An effort of over **50 N** is required to lift the wheel-barrow.

6. A metal bar is used to lever a load of 150N. The load is 1m from the fulcrum and the effort is 5m from the fulcrum. What effort is required to move the load?

ever a s 1m effort What e the EFFORT LOAD Steel bar lever Clockwise moments = 150 N x 1 m Anticlockwise moments = effort x 5m In equilibrium; clockwise moments = anti-clockwise moments $150 \times 1 = effort \times 5$ effort = 150×1 5

An effort of over **40 N** is required to move the load.

WORLD ASSOCIATION OF TECHNOLOGY TEA	MPLE EXAMINATION https://www.facebook.com/groups/25496344		n <u>t.com</u> © 2017 V.Ryan © 2017
MORED ASSOCIATION OF TECHNOLOGY TEAL	3M	miniorysiddel	1M
5. A wheel-barrow is used to lift a load of 200N. The wheel acts as the fulcrum. Calculate the	~	><	
ffort required.	EFFORT	LOAD	
		Ļ	
	Wheel-barrow lever	200 N	
6. A metal bar is used to lever a load of 150N. The load is 1m from the fulcrum and the effort is 5m from the fulcrum. What effort is required to move the load?	5 M		1M
	EFFORT		LOAD
	Steel bar le	ver	150 N

EXAMPLE EXAMINATION QUESTIONS AND ANSWERS

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

Clockwise moments = 200 N x 3 m Anticlockwise moments = effort x 2m In equilibrium; clockwise moments = anti-clockwise moments $200 \times 3 = effort \times 2$ $effort = 200 \times 3$ 2 effort = 600 2= 300 N

An effort of over **300 N** is required to move the load.

EXAMPLE EXAMINATION QUESTIONS

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

RATIOS - EXAMPLES

DEFINITION:

A ratio is the mathematical relationship between two or more numbers.

Here we see 2 blue circles compared to 3 red circles.

The circle below shows the area of blue in ratio with the area of red. There are 3 areas of red to just 1 area of blue.

RATIOS - QUESTIONS

DEFINITION:

A ratio is the mathematical relationship between two or more numbers.

The circle below shows the area of blue in ratio with the area of red. What is the ratio of blue to red?

RATIOS - EXAMPLES

What is the ratio of the blue area to the red area?

The circle below is divided into blue and red areas. The ratio of the blue to the red is 10:2, because there are 10 blue sections compared to the 2 red sections. This is the same as 5:1

The circle below is divided into blue and red areas. The ratio of the blue to the red is 9:3, because there are 10 blue sections compared to the 2 red sections. This is the same as 5:1

RATIOS - QUESTIONS

What is the ratio of the blue area to the red area?

The circle below is divided into blue and red areas. What is the ratio of blue to red sections?

The circle below is divided into blue and red areas. What is the ratio of blue to red sections?

RATIOS - EXAMPLES

Part of a recipe to serve two people, requires 4 cups of flour and 1 cup of water.

If the has to be scaled up to serve 10 people, how many cups of flour and water will be required as part of the recipe.

	FLOUR		WATER
SERVES TWO PEOPLE =	4	:	1
To find the number by which the original ratio numbers are multiplied, divide the new number of people to be served (10) by the old number of people to be served (2).	<u>10 PEC</u> 2 PEC		= 5
Then, multiply each number of the original ratio by the answer 5, to find the new amount of flour and water.	4x5	:	1x5
The new number of cups of flour and water are seen opposite	FLOUR 20	:	water 5

If the has to be scaled up to serve 12 people, how many cups of flour and water will be required as part of the recipe.

	FLOUR		WATER
SERVES TWO PEOPLE =	4	:	1
To find the number by which the original ratio numbers are multiplied, divide the new number of people to be served (12) by the old number of people to be served (2).	12 PEC 2 PEC		= 6
Then, multiply each number of the original ratio by the answer 6, to find the new amount of flour and water.	4x6	:	1x6
The new number of cups of flour and water are seen opposite	flour 24	:	water 6

RATIOS - QUESTIONS

Part of a recipe to serve two people, requires 4 cups of flour and 1 cup of water.

	FLOUR		WATER
SERVES TWO PEOPLE =	4	:	1
EXPLANATION:			
	_		
	_		
	_		

If the has to be scaled up to serve 12 people, how many cups of flour and water will be required as part of the recipe.

	FLOUR		WATER	
SERVES TWO PEOPLE =	4	:	1	
EXPLANATION:				

USING RATIOS TO SCALE DRAWINGS - EXAMPLES

The rectangle seen opposite has a height of 200mm and a length of 600 The ratio of the HEIGHT to the LENGTH is worked out by dividing the large number by the smaller number. HEIGHT : LENGTH $\frac{600}{200} = 3$ This means that the ratio is: 1:3

If the height is to be increased to 400mm and the ratio between the height and length is the same, what is the new measurement of the length?

1:3 400mm : ?

Quite simply multiply the 400mm by 3 to find the new measurement of the length

400 x 3 = 1200

400mm : 1200mm

If the height is to be increased to 600mm and the ratio between the height and length is the same, what is the new measurement of the length?

1:3 600mm : ?

Quite simply multiply the 600mm by 3 to find the new measurement of the length

600 x 3 = 1800 600mm : 1800mm

USING RATIOS TO SCALE DRAWINGS - EXAMPLES

If the height is to be increased to 500mm and the ratio between the height and length is the same, what is the new measurement of the length?

1:3 500mm : ?

Quite simply multiply the 400mm by 3 to find the new measurement of the length

500 x 3 = 1500

500mm : 1500mm

If the height is to be decreased to 100mm and the ratio between the height and length is the same, what is the new measurement of the length?

1:3

100mm : ?

Quite simply multiply the 400mm by 3 to find the new measurement of the length

100 x 3 = 300

100mm : 300mm

If the height is to be decreased to 800mm and the ratio between the height and length is the same, what is the new measurement of the length?

1:3

800mm : ?

Quite simply multiply the 400mm by 3 to find the new measurement of the length

800 x 3 = 2400 800mm : 2400mm

USING RATIOS TO SCALE DRAWINGS - QUESTIONS

CALCULATION:

USING RATIOS TO SCALE DRAWINGS - QUESTIONS

If the height is to be increased to 500mm and the ratio between the height and length is the same, what is the new measurement of the length?

CALCULATION:

FURTHER EXAMPLE QUESTIONS

PART ONE

The question is about alternative energy. A local wind farm produces 4 terawatt hours of electricity over a year. At the same time, a solar farm produced 0.5 terawatt hours of electrical power. What is the ratio Wind farm : Solar Power ?

> WIND FARM : SOLAR POWER 4 0.5

To ensure that final ratio is in whole numbers, divide the wind power total by the solar power total.

 $\frac{\text{WIND FARM}}{\text{SOLAR POWER}} = \frac{4}{0.5} = 8$

Then take the answer and place it on the wind power side of the ratio and the 1 on the solar power side.

WIND FARM	:	SOLAR POWER
8	:	1

PART TWO

The total alternative energy produced by the wind farm is 4 terawatt hours. The ratio between wind power and all other forms of alternative energy produced in the area is 1:6. What is the total amount of energy produced by the other alternative energy forms?

	WIND FARM	:	ALL OTHER FORMS OF ALTERNATIVE ENERGY
	1	:	6
	4 terawatt hours	:	?
To calculate the answer, take the 4 terawatts and multiply by 6	4 terawatts x 6	=	24 terawatt hours produced by all other forms of alternative energy

terawatts and multiply by 6.

FURTHER EXAMPLE QUESTIONS

The total amount of renewable energy produced in 2016 was 90 Terawatt hours (Twh).

The ratio of hydroelectricity compared to other renewable energy forms was 1:12.

What amount of energy was produced through hydroelectricity ?

HYDROELECTRICITY : OTHER RENEWABLE FORMS

1:12

Add both numbers (1 and 12) together. This gives us 13

Then, divide the total amount of renewable energy (90 terawatt hours) by 13

$\frac{90}{13}$ = 6.92 terawatt hours

If total amount of renewable energy produced in 2016 was 100 Terawatt hours (Twh) AND the ratio of hydroelectricity compared to other renewable energy forms was 1:9.

What amount of energy was produced through hydroelectricity ?

HYDROELECTRICITY : OTHER RENEWABLE FORMS

1:9

Add both numbers (1 and) together. This gives us 10

Then, divide the total amount of renewable energy (100 terawatt hours) by 10.

$$\frac{100}{10}$$
 = 10 terawatt hours

FURTHER QUESTIONS

PART ONE

The question is about alternative energy. A local wind farm produces 4 terawatt hours of electricity over a year. At the same time, a solar farm produced 0.5 terawatt hours of electrical power. What is the ratio Wind farm : Solar Power ?

	WIND FARM 4	:	SOLAR POWER 0.5
EXPLANATION:			

PART TWO

The total alternative energy produced by the wind farm is 4 terawatt hours. The ratio between wind power and all other forms of alternative energy produced in the area is 1:6. What is the total amount of energy produced by the other alternative energy forms?

WIND FARM	:	ALL OTHER FORMS OF ALTERNATIVE ENERGY	
1	:	6	
	1	1 :	1 : 6

FURTHER QUESTIONS

The total amount of renewable energy produced in 2016 was 90 Terawatt hours (Twh).

The ratio of hydroelectricity compared to other renewable energy forms was 1:12.

What amount of energy was produced through hydroelectricity ?

HYDROELECTRICITY : OTHER RENEWABLE FORMS

1:12

EXPLANATION: _____

If total amount of renewable energy produced in 2016 was 100 Terawatt hours (Twh) AND the ratio of hydroelectricity compared to other renewable energy forms was 1:9.

What amount of energy was produced through hydroelectricity ?

HOW TO CALCULATE THE VOLUME OF A CONE

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

DEFINITION: A cone has one surface with a circular base. The vertex is directly above the centre of the circular base.

If the height (h) is 50mm and the radius is 40mm

Then:

$$v=\frac{1/3}{3} \pi r^{2}h$$

$$v=\frac{1}{3} \times 3.14 \times (40 \times 40) \times 50$$

$$v=\frac{1}{3} \times 251200$$

$$v=\frac{251200}{3} = 83733.33 \text{mm}^{3}$$

MATHEMATICAL SKILLS

VOLUME OF A CUBE AND **ASSOCIATED GEOMETRICAL SHAPES**

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/

www.technologystudent.com © 2017 V.Ryan © 2017

DESIGN AND TECHNOLOGY

NOT FOR SALE OR REDISTRIBUTION

THIS MATERIAL CANNOT BE EDITED OR PLACED ON ANY OTHER FORM OF MEDIA, INCLUDING POWERPOINTS, INTRANETS, WEBSITES ETC...

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/

HOW TO CALCULATE THE VOLUME OF A CUBE

DEFINITION: A cube is a solid object, composed of six equal squares, with a 90 degree angle between adjacent sides.

All the sides of a cube are the same measurement. There are two similar formulas for calculating a cube's volume.

VOLUME (V) = $A \times A \times A$

OR A³

EXAMPLE 1

If the measurement of one side is 100mm:

VOLUME = 100mm x 100mm x 100mm

VOLUME = 1000000mm³ or 1000cm³

EXAMPLE 2

If the measurement of one side is 320mm:

VOLUME = 320mm x 320mm x 320mm

VOLUME =32768000mm³or 32768cm³

QUESTION 1

What is the volume of the cube shown opposite?

VOLUME (V) = $A \times A \times A$ OR A^3

If the measurement of one side is 90mm:

VOLUME =90mm x 90mm x 90mm VOLUME = 729000mm³ or 729cm³

QUESTION 2

What is the volume of the cube shown opposite?

VOLUME (V) = A x A x AOR A^3

If the measurement of one side is 120mm:

VOLUME = 120mm x 120mm x 120mm VOLUME = 1728000mm³ or 1728cm³

QUESTION 3

What is the volume of the cube shown opposite?

VOLUME (V) = $A \times A \times A$ OR A^3

If the measurement of one side is 55mm:

VOLUME = 55mm x 55mm x 55mm VOLUME = 166375mm³ or 166.375cm³

QUESTION 1

What is the volume of the cube shown opposite?

VOLUME (V) = $A \times A \times A$ OR A^3

QUESTION 2

What is the volume of the cube shown opposite?

VOLUME (V) = A x A x AOR A^3

QUESTION 3

What is the volume of the cube shown opposite?

VOLUME (V) = $A \times A \times A$ OR A^3

A solid cube of aluminium (A) has 200mm sides. However, a smaller area in the form of a cube with 100mm length sides, has been machined from the top surface (B). What is the volume of the finished 3D shape?

How to work out the answer:

Start by treating both A and B as solid cubes. Work out the volume of each cube A and B

CUBE 'A'

CUBE 'B'

If the measurement of one side is 200mm:

VOLUME = 200mm x 200mm x 200mm VOLUME = 8000000mm³ or 8000cm³

If the measurement of one side is 100mm:

VOLUME = 100mm x 100mm x 100mm VOLUME = 1000000mm³ or 1000cm³

Then, subtract the volume of B away from the volume of A, to find the final overall volume

> FINAL VOLUME = A - B FINAL VOLUME = 8000000mm³ - 1000000mm³ FINAL VOLUME = 7000000mm³ or 7000cm³

A solid cube of aluminium (A) has 200mm sides. However, a smaller area in the form of a cube with 100mm length sides, has been machined from the top surface (B). What is the volume of the finished 3D shape? Explain your working out.

The measurement of a side of cube A is clearly shown as 150mm

To work out the length of one side of cube B, simply subtract 150mm from the overall height of the shape.

225mm (overall height) - 150mm (length of one side of cube A)

225mm - 150mm = 75mm (this is the length of one side of cube B)

Then work out the volume of cubes A and B

CUBE 'A'

If the measurement of one side is 150mm:

VOLUME = 150mm x 150mm x 150mm VOLUME = 3375000mm³ or 3375cm³

Then, add the volume of cube B with the volume of cube A, to find the final overall volume

FINAL VOLUME = A + B FINAL VOLUME = 3375000mm³ + 421875mm³ FINAL VOLUME = 3796875mm³ or 3796.875cm³

CUBE 'B'

If the measurement of one side is 75mm:

VOLUME =75mm x 75mm x 75mm VOLUME = 421875mm³ or 421.875cm³

The unusual solid geometrical shape shown opposite can be treated as two cubes.

Calculate the entire volume of the shape/form.

Explain your working out.

HOW TO CALCULATE THE VOLUME OF A CYLINDER ATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS

DEFINITION: A three dimensional geometrical shape, that has a circle at each end of a single curved surface.

In order to calculate the volume of a cylinder, the height and radius of the circular top /bottom must be known. The following formula is used to calculate the volume.

 $v = \pi r^2 h$ volume = pi x radius² x height

 π (pi) = 3.14

 $=\pi r^2h$

volume = 3.14 x 50mm x 50mm x 100mm $volume = 785000 mm^{3}$ or

volume = 785 cm^3

QUESTIONS - VOLUME OF A CYLINDER WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

Calculate the volume of the cylinders seen below.

For the purpose of these calculations π (pi) = 3.14

FORMULA

 $v = \pi r^2 h$

volume = pi x radius² x height

π (pi) = 3.14

 $v = \pi r^{2}h$ volume = 3.14 x 60mm x 60mm x 120mm volume = 1356480mm³ Or volume = 1356.480cm³

 $v = \pi r^{2}h$ volume = 3.14 x 80mm x 80mm x 140mm volume = 2813440mm³ Or volume = 2813.440cm³

w

 $v = \pi r^{2}h$ volume = 3.14 x 75mm x 75mm x 135mm volume = 2384437.5mm³ Or volume = 2384.437cm³

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

The solid steel object seen below, has been manufactured on an engineering centre lathe. It is one solid piece. Calculate the total volume.

Then add both volumes together, to find the overall volume of the engineered object.

FINAL VOLUME = A + B FINAL VOLUME = 37680mm³ + 452160mm³ FINAL VOLUME = 489840mm³ or 489.84cm³ WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

The solid steel object seen below, has been manufactured on an engineering centre lathe. It is one solid piece. Calculate the total volume.

In order to calculate the entire volume of the engineered solid, it is treated as two separate parts. Part A is the smaller cylinder and part B is the larger cylinder.

EXAMINATION QUESTION - CYLINDER - VOLUME

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

The solid cylindrical object seen below, is engineered from mild steel, with a large machined 'blind' hole, in the top surface.

Calculate the volume of the engineered object.

Then subtract the volume of part A from the volume of part B, to find the overall volume of the engineered object.

FINAL VOLUME = B - A FINAL VOLUME = 1469520mm³ - 113040mm³ FINAL VOLUME = 1356480mm³ or 1356.48cm³

EXAMINATION QUESTION - CYLINDER - VOLUME

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

The solid cylindrical object seen below, is engineered from mild steel, with a large machined 'blind' hole, in the top surface.

Calculate the volume of the engineered object.

The cylindrical object is treated as two separate cylinders.

Part A is the 'Blind' hole. Part B is the cylinder.

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/

www.technologystudent.com © 2017 V.Ryan © 2017

DEFINITION: A Regular Square Pyramid has a square base with triangular sides. The apex (highest point), is inline with the centre of the square base. A square pyramid is a relatively common geometrical shape/form.

CALCULATE THE AREA OF BASE FIRST AREA OF BASE = LENGTH² AREA OF BASE = 60mm X 60mm = 3600mm²

THEN APPLY THE FOLLOWING FORMULA

Volume = $\frac{1}{3}$ × Base x Height $V = \frac{1}{3}$ × 3600mm x 100mm $V = \frac{1}{3}$ × 36000mm $V = \frac{360000}{3}$ = 120000mm³

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS

https://www.facebook.com/groups/254963448192823/

www.technologystudent.com © 2017 V.Rvan © 2017

MATHEMATICAL SKILLS

VOLUME OF A RECTANGULAR PRISM AND ASSOCIATED GEOMETRICAL SHAPES

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS

https://www.facebook.com/groups/254963448192823/

DESIGN AND TECHNOLOGY

NOT FOR SALE OR REDISTRIBUTION

THIS MATERIAL CANNOT BE EDITED OR PLACED ON ANY OTHER FORM OF MEDIA, INCLUDING POWERPOINTS, INTRANETS, WEBSITES ETC...

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/

www.technologystudent.com © 2017 V.Ryan © 2017

HOW TO CALCULATE THE VOLUME OF A RECTANGULAR PRISM

DEFINITION: A rectangular prism is a solid object, composed of six rectangles, with a 90 degree angle between adjacent sides. Opposite sides of a rectangular prism are equal and parallel to each other.

EXAM QUESTION - RECTANGULAR PRISM

What is the volume of the rectangular prism shown opposite?

V=L x W x H V=40 x 50 x 120 V=240000mm³

or V=240cm³

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS

RS https://www.facebook.com/groups/254963448192823/

www.technologystudent.com © 2017 V.Ryan © 2017

What is the volume of the rectangular prism shown opposite?

V=L x W x H V=50 x 60 x 90 V=270000mm³ or

V=270cm³

What is the volume of the rectangular prism shown opposite?

V=L x W x H V=70 x 80 x 100 V=560000mm³

or V=560cm³

EXAM QUESTION - RECTANGULAR PRISM

Calculate the volume of each rectangular prism, shown below.

V=L x W x H

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://w

https://www.facebook.com/groups/254963448192823/

www.technologystudent.com © 2017 V.Ryan © 2017

V=L x W x H

EXAM QUESTION - RECTANGULAR PRISM

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/

The solid geometrical shape shown opposite can be treated as two rectangular prisms.

www.technologystudent.com © 2017 V.Ryan © 2017

Calculate the entire volume of the shape/form

Explain your working out.

First, treat the shape / form as two separate rectangular prisms, Prism A and Prism B

Work out the volume of rectangular prism A and B

VOLUME OF 'A' V=L x W x H

VOLUME = 100mm x 110mm x 120mm VOLUME = 1320000mm³ or 1320cm³ VOLUME OF 'B' V=L x W x H

VOLUME =50mm x 55mm x 60mm VOLUME = 165000mm³ or 165cm³

Then, add the volume of rectangular prism A and the volume of rectangular prism B, to find the final overall volume.

FINAL VOLUME = A + B FINAL VOLUME = 1320000mm³ + 165000mm³ FINAL VOLUME = 1485000mm³ or 1485cm³

EXAM QUESTION - RECTANGULAR PRISMS

The ususal geometrical shape below, was a single aluminium rectangular prism. A section (section B) was then machined away to produce the shape we now see.

What is the volume of the finished 3D shape? Explain your working out.

To answer this question, the best approach is to treat the rectangular prism as two separate rectangular prisms, A and B. The length, width and height of each of the prisms can be clearly seen on the diagram above.

How to work out the answer:

Start by treating both A and B as solid rectangular prisms. Work out the volume of each rectangular A and B

 $V=L \times W \times H$

V=L x W x H

VOLUME = 100mm x 110mm x 120mm VOLUME = 1320000mm³ or 1320cm³ VOLUME = 50mm x 55mm x 80mm VOLUME = 220000mm³ or 220cm³

Then, subtract the volume of B from the volume of A, to find the final overall volume of the geometrical shape.

FINAL VOLUME = A - B FINAL VOLUME = 1320000mm³ - 220000mm³ FINAL VOLUME = 1100000mm³ or 1100cm³

'B'

EXAM QUESTION - RECTANGULAR PRISMS

The ususal geometrical shape below, was a single aluminium rectangular prism. A section (section B) was then machined away to produce the shape we now see.

What is the volume of the finished 3D shape? Explain your working out.

MATHEMATICS - VOLUMES - REVISION CARDS

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS

https://www.facebook.com/groups/254963448192823/

www.technologystudent.com © 2017 V.Ryan © 2017

HOW TO CALCULATE THE VOLUME OF A RECTANGULAR PRISM

DEFINITION: A rectangular prism is a solid object, composed of six rectangles, with a 90 degree angle between adjacent sides. Opposite sides of a rectangular prism are equal and parallel.

Unlike a cube, the area of the sides of a rectangular prism / cuboid are not the same, consequently the formula for calculating the volume is as follows:

HOW TO CALCULATE THE VOLUME OF <u>A CYLINDER</u>

DEFINITION: A three dimensional geometrical shape, that has a circle at each end of a single curved surface.

FIRST, AREA OF A CIRCLE = $\mathbf{T} \times \mathbf{R}^2$ CIRCUMFERENCE = 2 X $\mathbf{T} \times \mathbf{R}$

In order to calculate the volume of a cylinder, the height and radius of the circular top /bottom must be known. The following formula is used to calculate the volume.

π (pi) = 3.14 V = $πr^2h$

volume (v) = pi x radius² x height

MATHEMATICS - VOLUMES - REVISION CARDS

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS

https://www.facebook.com/groups/254963448192823/

www.technologystudent.com © 2017 V.Ryan © 2017

MATHEMATICAL SKILLS

VOLUME OF A SPHERE

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS

https://www.facebook.com/groups/254963448192823/

www.technologystudent.com © 2017 V.Ryan © 2017

DESIGN AND TECHNOLOGY

NOT FOR SALE OR REDISTRIBUTION

THIS MATERIAL CANNOT BE EDITED OR PLACED ON ANY OTHER FORM OF MEDIA, INCLUDING POWERPOINTS, INTRANETS, WEBSITES ETC...

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS h

https://www.facebook.com/groups/254963448192823/

www.technologystudent.com © 2017 V.Ryan © 2017

DEFINITION: A sphere is an object that is absolutely symmetrical about it's centre. From any angle it appears to be a circle, but it is a true three dimensional object.

EXAMPLE CALCULATION - VOLUME OF A SPHERE

HNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ WORLD ASSOCIATION

Using the formula shown opposite, calculate the volumes of the following spheres.(pi (TT) is 3.14)

v=4/	3πr³	
v=	$\frac{4}{3}$ x	<u>3.14 x (60x60x60</u>) 1
v=	$\frac{4}{3}$ x	<u>3.14 x (216000)</u> 1
v=	$\frac{4}{3}$ x	<u> 678240 </u>
v=	<u>27129</u> 3	960
v=	90432	0mm³

EXAMINATION QUESTIONS - VOLUME OF A SPHERE www.technologystudent.com © 2017 V.Ryan © 2017

WORLD ASSOCIATIC

Using the formula shown opposite, calculate the volumes of the following spheres (pi (Π) is 3.14)

d=70mm therefore r = 35mm

 $v = 4/3\pi r^{3}$ $v = \frac{4}{3} \times \frac{3.14 \times (35 \times 35 \times 35)}{1}$ $v = \frac{4}{3} \times \frac{3.14 \times (42875)}{1}$ $v = \frac{4}{3} \times \frac{134627.5}{1}$ $v = \frac{538510}{3}$ v= 179503.33mm³

d=98mm

d=98mm therefore r=49mm $v = 4/3\pi r^{3}$ $v = \frac{4}{3} \times \frac{3.14 \times (49 \times 49 \times 49)}{1}$ v= $\frac{4}{3} \times \frac{3.14 \times (117649)}{1}$ $v = \frac{4}{3} \times \frac{369417.86}{1}$ $v = \frac{1477671.44}{3}$ v= 492557.15mm³

MATHEMATICAL SKILLS

GEARS, GEAR TRAINS AND COMPOUND GEARS

ASSOCIATED EXAMINATION QUESTIONS

https://www.facebook.com/groups/254963448192823/

www.technologystudent.com © 2017 V.Ryan © 2017

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS

DESIGN AND TECHNOLOGY

NOT FOR SALE OR REDISTRIBUTION

THIS MATERIAL CANNOT BE EDITED OR PLACED ON ANY OTHER FORM OF MEDIA, INCLUDING POWERPOINTS, INTRANETS, WEBSITES ETC...

CALCULATING GEAR RATIO (VELOCITY RATIO)

In examinations, one of the first questions will be - to work out the 'gear ratio' (sometimes called velocity ratio). As a guide - always assume that the larger gear revolves one revolution. The number of rotations of the second gear has then to be worked out.

CALCULATING GEAR RATIO (VELOCITY RATIO)

In examinations, one of the first questions will be - to work out the 'gear ratio' (sometimes called velocity ratio). As a guide - always assume that the larger gear revolves one revolution. The number of rotations of the second gear has then to be worked out.

CALCULATING REVOLUTIONS PER MINUTE (RPM)

In the example below, the DRIVER gear is larger than the DRIVEN gear. The general rule is - large to small gear means 'multiply' the velocity ratio by the rpm of the first gear. Divide 60 teeth by 30 teeth to find the velocity ratio. Multiply this number (2) by the rpm (120). This gives an answer of 240rpm.

CALCULATING REVOLUTIONS PER MINUTE (RPM)

(LOAD)

GEAR TRAINS - EXAMPLE QUESTIONS AND ANSWERS

When faced with three gears, the question can be broken down into two parts. First work on Gears A and B. When this has been solved, work on gears B and C.

(Remember B is larger than A therefore, B outputs less revs/min and is slower)

Next, take B and C. C is smaller, therefore, revs/minute will increase and rotation will be faster.

$$\frac{60}{10}_{\text{teeth}} \frac{B}{C} = 6$$

20 REVS X 6 = 120 revs/min at 'C'

What direction does C revolve ?

A is clockwise, B consequently is anti-clockwise and C is therefore clockwise.

GEAR TRAINS - EXAMPLE QUESTIONS

When faced with three gears the question can be broken down into two parts. First work on Gears A and B. When this has been solved work on gears B and C.

A 20T	B 60T	C 10T	The diagram above shows a gear train composed of three gears. Gear A revolves at 60 revs/min in a clockwise direction. What is the output in revolutions per minute at Gear C? In what direction does Gear C revolve ?			а	
			GEA	RA	GEAR B	GEAR C	
			20 tee	eth	60 teeth	10 teeth	
	3		60 rpr	n			
60 REVS/MIN	ECHNOLOGY TEACHERS https://www.face	ebook.com/groups/	254963448192823/	<u>www.t</u>	echnologystudent.com © 2	017 V.Ryan © 2017	
First wo	ork out the speed at Gear E $= \frac{6}{2}$		teeth <u>B</u> teeth A	= evs/r	nin at 'B'		
(Rem	nember B is larger than A th	nerefore, B	outputs less	s revs	/min and is slov	wer)	
Next, take E	3 and C. C is smaller, there	fore, revs/ı	ninute will ir	ocreas	e and rotation	will be faster.	
			teeth <u>B</u>	=			
	RE	EVS X _	_ = _	r	evs/min at '	C'	

What direction does C revolve ? A is clockwise B consequently is anti-clockwise and C is the

A is clockwise, B consequently is anti-clockwise and C is therefore

GEAR TRAINS - EXAMPLE QUESTIONS AND ANSWERS

When faced with three gears the question can be broken down into two parts. First work on Gears A and B. When this has been solved work on gears B and C.

The diagram opposite shows a gear train composed of three gears. Gear A revolves at 90 revs/min in a clockwise direction.

What is the output in revolutions per minute at Gear C?

In what direction does Gear C revolve?

GEAR A	GEAR B	GEAR C
30 teeth	90 teeth	15 teeth
90 rpm	?	?

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

First work out the speed at Gear B.

 $\frac{90}{30}_{\text{teeth}} \frac{B}{A} = 3$ $= \frac{90^{\text{rpm}}}{3} = 30 \text{ revs/min at 'B'}$

(Remember B is larger than A therefore, B outputs less revs/min and is slower)

Next, take B and C. C is smaller, therefore, revs/minute will increase and rotation will be faster.

 $\frac{90}{15}$ teeth $\frac{B}{C} = 6$

30 REVS X 6 = 180 revs/min at 'C'

What direction does C revolve ?

A is clockwise, B consequently is anti-clockwise and C is therefore clockwise.

GEAR TRAINS - EXAMPLE QUESTIONS AND ANSWERS

When faced with three gears the question can be broken down into two parts. First work on Gears A and B. When this has been solved work on gears B and C.

COMPOUND GEARS - EXAMPLE QUESTIONS AND ANSWERS

Below is a question regarding 'compound gears'. Gears C and B represent a compound gear as they appear 'fixed' together. When drawn with a compass they have the same centre. Two gears 'fixed' together in this way rotate together and at the same RPM. When answering a question like this split it into two parts. Treat gears A and B as one question AND C and D as the second part.

 WORLD ASSOCIATION OF TECHNOLOGY TEACHERS
 https://www.facebook.com/groups/254963448192823/
 www.technologystudent.com © 2017
 V.Ryan © 2017

This is an example of a "compound gear train". Gear A rotates in a clockwise direction at 30 revs/min. What is the output in revs/min at D and what is the direction of rotation?

GEAR A	GEAR B	GEAR C	GEAR D
120 teeth	40 teeth	80 teeth	20 teeth

First find revs/min at Gear B.

 $\frac{120 \text{ teeth } B}{40 \text{ teeth } A} \equiv 3$

30 rpm X 3 = 90 rpm / min

B is smaller therefore it rotates faster and revs/min increase.

C is fixed to B and therefore, rotates at the same speed.

90 REVS/MIN at C

Next find revs/min at Gear D.

$$\frac{80 \text{ teeth}}{20 \text{ teeth}} \frac{C}{D} = 4$$

90 rpm (at C) X 4 = 360 rpm / min

D is smaller than C, therefore rotates faster (increased revs/min).

A revolves in a clockwise direction, B is therefore anti-clockwise, C is fixed to B and is also anti-clockwise, which means D revolves in a clockwise direction.

COMPOUND GEARS - EXAMPLE QUESTIONS AND ANSWERS

Below is a question regarding 'compound gears'. Gears C and B represent a compound gear as they appear 'fixed' together. When drawn with a compass they have the same centre. Two gears 'fixed' together in this way rotate together and at the same RPM. When answering a question like this split it into two parts. Treat gears A and B as one guestion AND C and D as the second part.

www.technologystudent.com © 2017 V.Ryan © 2017 WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/

This is an example of a "compound gear train". Gear A rotates in a clockwise direction at 30 revs/min. What is the output in revs/min at D and what is the direction of rotation?

GEAR A	GEAR B	GEAR C	GEAR D
120 teeth	40 teeth	80 teeth	20 teeth

First find revs/min at Gear B.

teeth	В	_
teeth	Α	

rpm X = rpm / min

B is smaller therefore it rotates faster and revs/min increase.

C is fixed to B and therefore, rotates at the same speed.

REVS/MIN at C

Next find revs/min at Gear D. teeth $\frac{C}{D}$ =

__ rpm (at C) X _ = ___ rpm / min

D is smaller than C, therefore rotates faster (increased revs/min).

A revolves in a clockwise direction, B is therefore anti-clockwise, C is fixed to B and is also anti-clockwise, which means D revolves in a _____ direction.

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/

www.technologystudent.com © 2017 V.Ryan © 2017

Try the following question:

What is the revs/min at gear D and what is its direction?