$(\ln u)^{\prime}=\frac{u^{\prime}}{u}$

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS

 https://www.facebook.com/groups/254963448192823/
$\frac{x^{3}}{3}$

泡 $\quad y=e^{\sin d x}, \quad 3 x$ $\left(a^{x}\right)^{\prime}=a^{\mu} \ln a: 8 x^{2}$ $\left(e^{x}\right)^{\prime}=e^{x}$; $8^{\sin 3 x}$ MATHS TIME LINE $x^{\frac{x}{2}} 3 e^{\sin 3 x / x^{2}} \cos 3 x(3 x)^{3}$ $\left(e^{\sin 3 x}\right)^{\prime}=e^{3 \sin 3 x}(\sin 3 x)$? $3 x^{n} d x$ Q $8 x+3 \frac{x^{x}}{7}=5 \frac{a^{3}}{3} \cdot \frac{x^{3}}{7}$ $6 x^{2}+10 x-7 \quad(2 x+3)$$y^{\prime}=\cos (2 x-3) \quad 2 \cos$

$(2 x-3)$

$$
\left(e^{x}\right)^{\prime}=e^{x}
$$

$\frac{x^{n+1}}{n-1}+C \quad \int 3 d x \begin{gathered}4 x^{2}+8 x \\ x^{2} d x a^{\frac{2}{n}}+\geq 6 x^{2} d x\end{gathered}$ $(2 x+3)$

$\ln a\left(\log _{n} x\right)^{\prime}=\frac{1}{x} \log _{n} x$
$\frac{5}{7} a^{2} x^{-4}, \ldots 8 x d x$

DESIGN AND TECHNOLOGY - MATHS TIME LINE Year 7.

| Understand and be able to convert cms to mms. | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | |
| To be able to measure accurately, in both cms and mms. | | | | | | |

DESIGN AND TECHNOLOGY - MATHS TIME LINE Year 8. In addition to Year 7

DESIGN AND TECHNOLOGY - MATHS TIME LINE Year 9. In addition to Years 7 and 8

DESIGN AND TECHNOLOGY - MATHS TIME LINE KS 4. In addition to Years 7, 8 and 9

MATHEMATICAL SKILLS

AREA OF A SQUARE AND ASSOCIATED EXAMINATION QUESTIONS

DESIGN AND TECHNOLOGY

NOT FOR SALE OR REDISTRIBUTION
THIS MATERIAL CANNOT BE EDITED OR PLACED ON ANY OTHER FORM OF MEDIA, INCLUDING POWERPOINTS, INTRANETS, WEBSITES ETC...

Definition: A square has four sides, with each being equal in length. Each of the four internal angles are right angles, 90 degrees.

SAMPLE QUESTIONS

Calculate the area of the square shown opposite. The length of one side is 100 mm

AREA $=X^{2}$

AREA $=100 \mathrm{~mm} \times 100 \mathrm{~mm}$

AREA $=10000 \mathrm{~mm}^{2}$

Calculate the area of the square shown opposite. The length of one side is 50 mm

AREA $=X^{2}$
AREA $=50 \mathrm{~mm} \times 50 \mathrm{~mm}$
AREA $=2500 \mathrm{~mm}^{2}$

Calculate the area of the square shown opposite. The length of one side is 90 mm

AREA $=X^{2}$

AREA $=90 \mathrm{~mm} \times 90 \mathrm{~mm}$

AREA $=8100 \mathrm{~mm}^{2}$

Calculate the area of the square shown opposite. The length of one side is 70 mm

AREA $=X^{2}$

AREA $=70 \mathrm{~mm} \times 70 \mathrm{~mm}$

AREA $=4900 \mathrm{~mm}^{2}$

Calculate the area of the square shown opposite. The length of one side is 80 mm
$\operatorname{AREA}=\mathrm{X}^{2}$

AREA $=80 \mathrm{~mm} \times 80 \mathrm{~mm}$

AREA $=6400 \mathrm{~mm}^{2}$

Calculate the area of the square shown opposite. The length of one side is 60 mm

AREA $=X^{2}$

AREA $=60 \mathrm{~mm} \times 60 \mathrm{~mm}$

AREA $=3600 \mathrm{~mm}^{2}$

Definition: A square has four sides, with each being equal in length. Each of the four internal angles are right angles, 90 degrees.

SAMPLE QUESTIONS

Calculate the area of the square shown opposite. The length of one side is 100 mm
\qquad
\qquad
\qquad
\qquad
100 mm

Calculate the area of the square shown opposite. The length of one side is 50 mm
\qquad
\qquad
\qquad
\qquad
50 mm

SAMPLE QUESTIONS

Calculate the area of the square shown opposite. The length of one side is 80 mm
\qquad
\qquad
\qquad
\qquad

Calculate the area of the square shown opposite. The length of one side is 60 mm
\qquad
\qquad
\qquad
\qquad

AREA OF A SQUARE - EXAMINATION QUESTION

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/
A plywood panel for a cabinet is seen below.

1. Calculate the area of the plywood required, before it is cut to shape (the overall square of plywood required, before it is cut to an L shape).
2. Calculate the area of the final L shape.

First, calculate the area of the uncut plywood, by treating it as a square $500 \mathrm{~mm} x$ 500 mm .

AREA $=$ LENGTH OF SIDE X LENGTH OF SIDE
AREA $=500 \times 500$
AREA $=250000 \mathrm{~mm}^{2}$
Now, calculate the area of the smaller piece to be cut away, during the shaping of the panel

AREA $=$ LENGTH OF SIDE X LENGTH OF SIDE
AREA $=250 \times 250$
AREA $=62500 \mathrm{~mm}^{2}$
Now subtract the smaller area from the area of the uncut plywood.
$250000-62500=187500$

AREA OF FINAL SHAPED PIECE IS $187500 \mathrm{~mm}^{2}$

AREA OF A SQUARE - EXAMINATION QUESTION

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017
A plywood panel for a cabinet is seen below.

1. Calculate the area of the plywood required, before it is cut to shape (the overall square of plywood required, before it is cut to an L shape).
2. Calculate the area of the final L shape.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

AREA OF A SQUARE - EXAMINATION QUESTION

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017
An acrylic window for a school project seen below, is composed of two pieces, accurately cut to size on a laser cutter. They fit perfectly together.

1. Calculate the area of piece A
2. Calculate the area of piece. B

First, calculate the entire area of ' A ', without the centre piece being removed, by treating it as a square $400 \mathrm{~mm} \times 400 \mathrm{~mm}$.

AREA = LENGTH OF SIDE X LENGTH OF SIDE
AREA $=400 \times 400$
AREA $=160000 \mathrm{~mm}^{2}$
Now, calculate the area of the smaller piece ' B ', which is also the size of the piece to be removed from ' A '.

AREA = LENGTH OF SIDE X LENGTH OF SIDE
AREA $=200 \times 200$
AREA $=40000 \mathrm{~mm}^{2}$
Now subtract the smaller area ' B ' from the area of ' A '. The answer will be the area of ' A ' with it's central window of material removed.
$160000-40000=120000 \mathrm{~mm}^{2}$
AREA OF FINAL SHAPED PIECE 'A’ WITHOUT CENTRAL PIECE IS $120000 \mathrm{~mm}^{2}$ AREA OF PIECE 'B' IS $40000 \mathrm{~mm}^{2}$

AREA OF A SQUARE - EXAMINATION QUESTION

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017 An acrylic window for a school project seen below, is composed of two pieces, accurately cut to size on a laser cutter. They fit perfectly together.

1. Calculate the area of piece A
2. Calculate the area of piece. B

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

MATHEMATICAL SKILLS

AREA OF A RECTANGLE AND ASSOCIATED EXAMINATION QUESTIONS

DESIGN AND TECHNOLOGY

NOT FOR SALE OR REDISTRIBUTION
THIS MATERIAL CANNOT BE EDITED OR PLACED ON ANY OTHER FORM OF MEDIA, INCLUDING POWERPOINTS, INTRANETS, WEBSITES ETC...

CALCULATING THE AREA OF A RECTANGLE

Definition: A rectangle has four sides, with the opposite sides being the same length and parallel. Each of the four internal angles are right angles, 90 degrees.

FORMULA
AREA $=X$ multiplied by Y
AREA =LENGTH x HEIGHT

SAMPLE QUESTIONS

Calculate the area of the rectangle shown opposite.

AREA $=X$ multiplied by Y
$A R E A=100 \mathrm{~mm} \times 50 \mathrm{~mm}$
AREA $=5000 \mathrm{~mm}^{2}$

Calculate the area of the rectangle shown opposite.

AREA $=X$ multiplied by Y

AREA $=90 \mathrm{~mm} \times 60 \mathrm{~mm}$
AREA $=5400 \mathrm{~mm}^{2}$

Calculate the area of the rectangle shown opposite.

AREA $=X$ multiplied by Y
AREA $=110 \mathrm{~mm} \times 70 \mathrm{~mm}$

AREA $=7700 \mathrm{~mm}^{2}$

Calculate the area of the rectangle shown opposite.

AREA $=X$ multiplied by Y
$A R E A=120 \mathrm{~mm} \times 80 \mathrm{~mm}$

AREA $=9600 \mathrm{~mm}^{2}$

Calculate the area of the rectangle shown opposite.

AREA = X multiplied by Y
$A R E A=115 \mathrm{~mm} \times 75 \mathrm{~mm}$

AREA $=8625 \mathrm{~mm}^{2}$

Calculate the area of the rectangle shown opposite.

AREA $=X$ multiplied by Y

AREA $=135 \mathrm{~mm} \times 85 \mathrm{~mm}$

AREA $=11475 \mathrm{~mm}^{2}$

Definition: A rectangle has four sides, with the opposite sides being the same length and parallel. Each of the four internal angles are right angles, 90 degrees.

FORMULA
AREA $=X$ multiplied by Y
AREA =LENGTH x HEIGHT

SAMPLE QUESTIONS

Calculate the area of the rectangle shown opposite.
\qquad
\qquad
\qquad
\qquad

Calculate the area of the rectangle shown opposite.

90 mm

SAMPLE QUESTIONS

Calculate the area of the rectangle shown opposite.
\qquad
\qquad
\qquad
\qquad

Calculate the area of the rectangle shown opposite.
\qquad
\qquad
\qquad
\qquad

Calculate the area of the rectangle shown opposite.
\qquad
\qquad
\qquad
\qquad

Calculate the area of the rectangle shown opposite.
\qquad
\qquad
\qquad

135 mm

AREA OF A RECTANGLE - EXAMINATION QUESTION

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823
An acrylic panel for a storage unit is seen below.

1. Calculate the area of the acrylic required, before it is cut to shape (the overall rectangle of acrylic required, before it is cut to an L shape).
2. Calculate the area of the final L shape.

First, calculate the area of the uncut acrylic, by treating it as a rectangle $500 \mathrm{~mm} x$ 400 mm .

AREA $=$ LENGTH \times HEIGHT
AREA $=500 \times 400$
AREA $=200000 \mathrm{~mm}^{2}$
Now, calculate the area of the smaller rectangular piece to be cut away, during the shaping of the panel

AREA $=$ LENGTH X HEIGHT
AREA $=250 \times 200$
AREA $=50000 \mathrm{~mm}^{2}$
Now subtract the smaller area from the area of the uncut plywood.
$200000-50000=150000$
AREA OF FINAL SHAPED PIECE IS $150000 \mathrm{~mm}^{2}$

AREA OF A RECTANGLE - EXAMINATION QUESTION

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS
An acrylic panel for a storage unit is seen below.

1. Calculate the area of the acrylic required, before it is cut to shape (the overall rectangle of acrylic required, before it is cut to an L shape).
2. Calculate the area of the final L shape.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

AREA OF A RECTANGLE - EXAMINATION QUESTION

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS
A rectangular acrylic window for an Art project seen below, is composed of two rectangular pieces, accurately cut to size on a laser cutter. They fit perfectly together.

1. Calculate the area of piece A
2. Calculate the area of piece. B

200mm

First, calculate the entire area of 'A', without the smaller piece being removed, by treating it as a rectangle $400 \mathrm{~mm} \times 300 \mathrm{~mm}$.

AREA $=$ LENGTH X HEIGHT
AREA $=400 \times 300$
AREA $=120000 \mathrm{~mm}^{2}$
Now, calculate the area of the smaller rectangular piece ' B ', which is also the size of the piece to be removed from ' A '.

AREA $=$ LENGTH X HEIGHT
AREA $=200 \times 150$
AREA $=30000 \mathrm{~mm}^{2}$

Now subtract the smaller rectangular area ' B ' from the total area of rectangle ' A '. The answer will be the area of ' A ', with the smaller rectangle of waste acrylic being removed.
$120000-30000=90000 \mathrm{~mm}^{2}$

AREA OF FINAL SHAPED PIECE ‘A’ WITHOUT THE SMALLER PIECE IS 90000mm²
AREA OF PIECE ‘B' IS $30000 \mathrm{~mm}^{2}$

AREA OF A RECTANGLE - EXAMINATION QUESTION

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017 A rectangular acrylic window for an Art project seen below, is composed of two rectangular pieces, accurately cut to size on a laser cutter. They fit perfectly together.

1. Calculate the area of piece A
2. Calculate the area of piece. B

200mm

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

MATHEMATICAL SKILLS

AREA AND CIRCUMFERENCE OF A CIRCLE ASSOCIATED EXAMINATION QUESTIONS

 DIAMETER(d)
DESIGN AND TECHNOLOGY

NOT, FOR SALEOR REDISTRIBUTION
THIS MATERIAL CANNOT BE EDITED OR PLACED'ON ANY OTHER FORM OF MEDIA, INCLLUDINGPOWERPOINTS, INTRANETS, WEBSITES ETC...

Definition: A precise curve around a centre. Any point on the curve is an equal distance from the centre. A circle is composed of a circumference (the precise curve) and a diameter and radius.

FORMULA

$$
\begin{aligned}
& \text { AREA }=\pi r^{2} \\
& \pi(\mathrm{pi})=3.14
\end{aligned}
$$

A circle has a radius of 100 mm . What is the area of the circle?

AREA $=\pi r^{2} \quad \pi(p i)=3.14$
AREA $=3.14 \times(100 \times 100)$
AREA $=3.14 \times(10000)$
AREA $=31400 \mathrm{~mm}^{2}$

A circle has a radius of 60 mm . What is the area of the circle?

AREA $=\pi r^{2} \quad \pi(p i)=3.14$
AREA $=3.14 \times(60 \times 60)$
AREA $=3.14 \times(3600)$
AREA $=11304 \mathrm{~mm}^{2}$

A circle has a radius of 80 mm . What is the area of the circle?

AREA $=\pi r^{2}$
$\pi(p i)=3.14$
AREA $=3.14 \times(80 \times 80)$
AREA $=3.14 \times(6400)$
AREA $=20096 \mathrm{~mm}^{2}$

A circle has a radius of 30 mm . What is the area of the circle?

> AREA $=\pi r^{2} \quad \pi(\mathrm{pi})=3.14$ AREA $=3.14 \times(30 \times 30)$ AREA $=3.14 \times(900)$ AREA $=2826 \mathrm{~mm}^{2}$

A circle has a radius of 40 mm . What is the area of the circle?

AREA $=\pi r^{2} \quad \pi(p i)=3.14$
AREA $=3.14 \times(40 \times 40)$
AREA $=3.14 \times(1600)$
AREA $=5024 \mathrm{~mm}^{2}$

A circle has a radius of 75 mm . What is the area of the circle?

AREA $=\pi r^{2} \quad \pi(\mathrm{pi})=3.14$
AREA $=3.14 \times(75 \times 75)$
AREA $=3.14 \times(5625)$
AREA $=17662.5 \mathrm{~mm}^{2}$

A circle has a radius of 45 mm . What is the area of the circle?

AREA $=\pi r^{2} \quad \pi(p i)=3.14$
AREA $=3.14 \times(45 \times 45)$
AREA $=3.14 \times(2025)$
AREA $=6358.5 \mathrm{~mm}^{2}$

A circle has a radius of 90 mm . What is the area of the circle?

AREA $=\pi r^{2} \quad \pi(p i)=3.14$
AREA $=3.14 \times(90 \times 90)$
AREA $=3.14 \times(8100)$
AREA $=25434 \mathrm{~mm}^{2}$

Definition: A precise curve around a centre. Any point on the curve is an equal distance from the centre. A circle is composed of a circumference (the precise curve) and a diameter and radius.

FORMULA

$$
\begin{aligned}
& \text { AREA }=\pi r^{2} \\
& \pi(\mathrm{pi})=3.14
\end{aligned}
$$

SAMPLE QUESTIONS

A circle has a radius of 100 mm . What is the area of the circle?

AREA $=\pi r^{2} \quad \pi(p i)=3.14$
\qquad
\qquad
\qquad
\qquad

A circle has a radius of 60 mm . What is the area of the circle?

AREA $=\pi r^{2}$
$\pi(\mathrm{pi})=3.14$
\qquad
\qquad
\qquad

A circle has a radius of 80 mm . What is the area of the circle?

AREA $=\pi r^{2}$
$\pi(\mathrm{pi})=3.14$
\qquad
\qquad
\qquad
\qquad
A circle has a radius of 30 mm . What is the area of the circle?
AREA $=\pi r^{2}$
$\pi(p i)=3.14$

A circle has a radius of 40 mm . What is the area of the circle?

AREA $=\pi r^{2}$
$\pi(\mathrm{pi})=3.14$

A circle has a radius of 75 mm . What is the area of the circle?

AREA $=\pi r^{2} \quad \pi(p i)=3.14$
\qquad
\qquad

A circle has a radius of 45 mm . What is the area of the circle?

AREA $=\pi r^{2}$
$\pi(p i)=3.14$
\qquad
\qquad
\qquad
AREA $=\pi r^{2} \quad \pi(p i)=3.14$
A circle has a radius of 90 mm . What is the area of the circle?
\qquad
\qquad
\qquad
\qquad

CALCULATING THE CIRCUMFERENCE OF A CIRCLE GIVEN THE RADIUS

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/
Definition: The circumference of a circle is the measurement of the boundary, all the way round, 360 degrees.

A circle has a radius of 100 mm . What is the circumference?

CIRCUMFERENCE $=2 \times \pi x r$
$C=2 \times \pi \times r$
C $=2 \times 3.14 \times 100$
$\mathrm{C}=628 \mathrm{~mm}$

A circle has a radius of 60 mm . What is the circumference?

CIRCUMFERENCE $=2 x \pi x r$
$C=2 \mathrm{x} \pi \mathrm{x}$
C $=2 \times 3.14 \times 60$
$\mathrm{C}=376.8 \mathrm{~mm}$

A circle has a radius of 80 mm . What is the circumference?

CIRCUMFERENCE $=2 \times \pi x r$

$$
\begin{aligned}
& C=2 \times \pi \times r \\
& C=2 \times 3.14 \times 80 \\
& C=502.4 \mathrm{~mm}
\end{aligned}
$$

A circle has a radius of 30 mm . What is the circumference?

CIRCUMFERENCE $=2 x \pi x r$
$C=2 x \pi x r$
C $=2 \times 3.14 \times 30$
$C=188.4 \mathrm{~mm}$

A circle has a radius of 40 mm . What is the circumference?

CIRCUMFERENCE $=2 \times \pi x r$
$C=2 \times \pi \times r$
C $=2 \times 3.14 \times 40$
$\mathrm{C}=251.2 \mathrm{~mm}$

A circle has a radius of 75 mm . What is the circumference?

CIRCUMFERENCE $=2 \times \pi x r$
$C=2 x \pi x r$
C $=2 \times 3.14 \times 75$
$C=471 \mathrm{~mm}$

A circle has a radius of 45 mm . What is the circumference?

CIRCUMFERENCE $=2 x \pi x r$
$C=2 \times \pi \times r$
C $=2 \times 3.14 \times 45$
C $=282.6 \mathrm{~mm}$

A circle has a radius of 90 mm . What is the circumference?

CIRCUMFERENCE $=2 \times \pi x r$
$C=2 x \pi x r$
C $=2 \times 3.14 \times 90$
$\mathrm{C}=565.2 \mathrm{~mm}$

Definition: The circumference of a circle is the measurement of the boundary, all the way round, 360 degrees.

A circle has a radius of 100 mm . What is the circumference?

CIRCUMFERENCE $=2 \times \pi \times r$
\qquad
\qquad
\qquad
\qquad

A circle has a radius of 60 mm . What is the circumference?

CIRCUMFERENCE $=2 \times \pi \times r$
\qquad
\qquad
\qquad
\qquad

A circle has a radius of 80 mm . What is the circumference?

CIRCUMFERENCE $=2 \times \pi x r$

CIRCUMFERENCE - SAMPLE QUESTIONS

A circle has a radius of 30 mm . What is the circumference?

A circle has a radius of 40 mm . What is the circumference?

CIRCUMFERENCE $=2 \times \pi \times r$
\qquad
\qquad
\qquad
\qquad
CIRCUMFERENCE $=2 \times \pi \times r$
\qquad
\qquad
\qquad
\qquad

CIRCUMFERENCE $=2 \times \pi \times r$ the circumference?

A circle has a radius of 45 mm . What is the circumference?

CIRCUMFERENCE $=2 \times \pi \times r$

A circle has a radius of 90 mm . What is the circumference?

CIRCUMFERENCE $=2 \times \pi \times r$
\qquad
\qquad
\qquad
\qquad

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

FORMULA
AREA $=\pi r^{2}$
$\pi(p i)=3.14$

AREA $=3.14 \times(65 \times 65)$
AREA $=3.14 \times(4225)$
AREA $=13266.5 \mathrm{~mm}^{2}$

The round section mild steel bar seen opposite, has a radius of 65 mm .

What is the area of the 'circle' at one end?
What is the circumference of the round section bar?

FORMULA

$$
\begin{gathered}
\text { CIRCUMFERENCE }=2 \times \pi \times r \\
\pi(\mathrm{pi})=3.14
\end{gathered}
$$

$$
C=2 x \pi x r
$$

$$
C=2 \times 3.14 \times 65
$$

$$
\mathrm{C}=408.2 \mathrm{~mm}
$$

The round section mild steel bar seen opposite, has a radius of 110 mm .

What is the area of the 'circle' at one end?
What is the circumference of the round section bar?

FORMULA
$\operatorname{AREA}=\pi r^{2}$
$\pi(p i)=3.14$

FORMULA

$$
\begin{gathered}
\text { CIRCUMFERENCE }=2 \times \pi \times r \\
\pi(\mathrm{pi})=3.14
\end{gathered}
$$

$$
\begin{aligned}
& C=2 \times \pi \times r \\
& C=2 \times 3.14 \times 110 \\
& C=690.8 \mathrm{~mm}
\end{aligned}
$$

AREA $=3.14 \times(110 \times 110)$
AREA $=3.14 \times(12100)$
AREA $=37994 \mathrm{~mm}^{2}$

CIRCLE AREA AND CIRCUMFERENCE EXAMINATION QUESTIONS

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS A student is trying to work the ergonomic dimensions (measurements) for the 'round' handle of a machine vice, that he intends to manufacture. The student measures the radius of the handle of an existing handle and finds it to be 25 mm .

What is the circumference of the handle?
What is the area of the 'round' end of the handle?

FORMULA
AREA $=\pi r^{2}$
$\pi(\mathrm{pi})=3.14$

AREA $=3.14 \times(25 \times 25)$
AREA $=3.14 \times(625)$
AREA $=1962.5 \mathrm{~mm}^{2}$

	RADIUS
HANDLE 1	20
HANDLE 2	25
HANDLE 3	24
HANDLE 4	30
HANDLE 5	28
TOTAL	127
AVERAGE	25.4 mm

FORMULA

CIRCUMFERENCE $=2 x \pi x r$
 $\pi(\mathrm{pi})=3.14$

$C=2 x \pi x r$
C $=2 \times 3.14 \times 25$
$C=157 \mathrm{~mm}$

The student collects the radius measurements of five machine vices and enters the data into a table of results, seen opposite.

Calculate the average radius and enter your result in the table

Why could this measurement be useful when designing a new machine vice, based on the design above?

The measurement could be applied to the new design of the machine vice handle. Using the average radius measurement should mean that the handle is a good ergonomic 'fit' for the majority of users.

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/

FORMULA
AREA $=\pi r^{2}$
$\pi(\mathrm{pi})=3.14$

The round section mild steel bar seen opposite, has a radius of 65 mm .

What is the area of the 'circle' at one end?
What is the circumference of the round section bar?

FORMULA

$$
\begin{gathered}
\text { CIRCUMFERENCE }=2 \times \pi \times r \\
\pi(\mathrm{pi})=3.14
\end{gathered}
$$

\qquad
\qquad

The round section mild steel bar seen opposite, has a radius of 110 mm .

What is the area of the 'circle' at one end?
What is the circumference of the round section bar?

FORMULA

$$
\begin{gathered}
\text { CIRCUMFERENCE }=2 \times \pi \times r \\
\pi(\mathrm{pi})=3.14
\end{gathered}
$$

\qquad

CIRCLE AREA AND CIRCUMFERENCE EXAMINATION QUESTIONS

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017 A student is trying to work the ergonomic dimensions (measurements) for the 'round' handle of a machine vice, that he intends to manufacture. The student measures the radius of the handle of an existing handle and finds it to be 25 mm .

What is the circumference of the handle?
What is the area of the 'round' end of the handle?

FORMULA
AREA $=\pi r^{2}$
$\pi(\mathrm{pi})=3.14$

FORMULA

CIRCUMFERENCE $=2 \times \pi \times r$ $\pi(p i)=3.14$

The student collects the radius measurements of five machine vices and enters the data into a table of results, seen opposite.

Calculate the average radius and enter your result in the table

Why could this measurement be useful when designing a new machine vice, based on the design above?

CIRCLE AREA AND CIRCUMFERENCE EXAMINATION QUESTIONS

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

A piece of steel tube can be seen opposite. The external and internal diameters can be read from the diagram.

What is the area of the surface at one end of the steel?

FORMULA

AREA $=\pi r^{2}$
$\pi(\mathrm{pi})=3.14$

Treat the surface at the end of the tube as two circles and find the area of each one:

EXTERNAL DIAMETER

AREA $=\pi r^{2}$

AREA $=3.14 \times(60 \times 60)$
AREA $=3.14 \times(3600)$
AREA $=11304 \mathrm{~mm}^{2}$

INTERNAL DIAMETER
AREA $=\pi r^{2}$
AREA $=3.14 \times(45 \times 45)$
AREA $=3.14 \times(2025)$
AREA $=6358.5 \mathrm{~mm}^{2}$

Then, subtract the area of the internal circle from the area of the external circle, to find the total surface area of the tube.

$$
11304-6358.5=4945.5 \mathrm{~mm}^{2}
$$

The total surface area of one end of the tube is $4945.5 \mathrm{~mm}^{2}$

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

A piece of steel tube can be seen opposite. The external and internal diameters can be read from the diagram.

What is the area of the surface at one end of the steel?

FORMULA

$$
\begin{aligned}
& \text { AREA }=\pi r^{2} \\
& \pi(\mathrm{pi})=3.14
\end{aligned}
$$

Treat the surface at the end of the tube as two circles and find the area of each one:
EXTERNAL DIAMETER

INTERNAL DIAMETER

\qquad
\qquad
\qquad
\qquad

Then, subtract the area of the internal circle from the area of the external circle, to find the total surface area of the tube.
\qquad
\qquad
\qquad
The total surface area of one end of the tube is \qquad

MATHEMATICAL SKILLS

AREA OF A TRIANGLE AND ASSOCIATED EXAMINATION QUESTIONS

DESIGN AND TECHNOLOGY

NOT FOR SALE OR REDISTRIBUTION

THIS MATERIAL CANNOT BE EDITED OR PLACED ON ANY OTHER FORM OF MEDIA, INCLUDING POWERPOINTS, INTRANETS, WEBSITES ETC...

Definition: A triangle can be regarded as a polygon with three sides.

FORMULA

AREA $=1 / 2 \times$ BASE \times HEIGHT

AREA $=1 / 2 b \times h$
$\operatorname{AREA}=\frac{\mathrm{b} \times \mathrm{h}}{2}$

SAMPLE QUESTIONS

A triangle has a base of 60 mm and a height of 80 mm

AREA $=1 / 2 \times$ BASE \times HEIGHT
AREA $=\frac{60 \times 80}{2}$
$A R E A=\frac{4800}{2}$
AREA $=2400 \mathrm{~mm}^{2}$
A triangle has a base of 40 mm and a height of 50 mm

AREA $=1 / 2 \times$ BASE \times HEIGHT
AREA $=\frac{40 \times 50}{2}$
AREA $=\frac{2000}{2}$
AREA $=1000 \mathrm{~mm}^{2}$

A triangle has a base of 70 mm and a height of 90 mm

AREA $=1 / 2 \times$ BASE \times HEIGHT
AREA $=\frac{70 \times 90}{2}$
AREA $=\frac{6300}{2}$
AREA $=3150 \mathrm{~mm}^{2}$

A triangle has a base of 100 mm and a height of 120 mm

AREA $=1 / 2 \times$ BASE \times HEIGHT
AREA $=\frac{100 \times 120}{2}$
$A R E A=\frac{12000}{2}$
AREA $=6000 \mathrm{~mm}^{2}$

A triangle has a base of 75 mm and a height of 50 mm

AREA $=1 / 2 \times$ BASE \times HEIGHT
AREA $=\frac{75 \times 50}{2}$
AREA $=\frac{3750}{2}$
AREA $=1875 \mathrm{~mm}^{2}$

A triangle has a base of 45 mm and a height of 55 mm

AREA $=1 / 2 \times$ BASE \times HEIGHT
AREA $=\frac{45 \times 55}{2}$
AREA $=\frac{2475}{2}$
AREA $=1237.5 \mathrm{~mm}^{2}$

A triangle has a base of 110 mm and a height of 130 mm

AREA $=1 / 2 \times$ BASE \times HEIGHT

AREA $=\frac{110 \times 130}{2}$
AREA $=\frac{14300}{2}$
AREA $=7150 \mathrm{~mm}^{2}$

A triangle has a base of 300 mm and a height of 400 mm

AREA $=1 / 2 \times$ BASE \times HEIGHT
AREA $=\frac{300 \times 400}{2}$
$A R E A=\frac{120000}{2}$
AREA $=60000 \mathrm{~mm}^{2}$

Definition: A triangle can be regarded as a polygon with three sides.

FORMULA

AREA = 1/2 X BASE X HEIGHT

AREA $=1 / 2 \mathrm{~b} \times \mathrm{h}$
$\mathrm{AREA}=\frac{\mathrm{b} \times \mathrm{h}}{2}$

SAMPLE QUESTIONS

A triangle has a base of 60 mm and a height of 80 mm

A triangle has a base of 40 mm and a height of 50 mm

AREA $=1 / 2 \times$ BASE \times HEIGHT

AREA $=1 / 2 \times$ BASE \times HEIGHT

A triangle has a base of 70 mm and a height of 90 mm

A triangle has a base of 100 mm and a height of 120 mm

AREA $=1 / 2 \times$ BASE \times HEIGHT

A triangle has a base of 75 mm and a height of 50 mm

A triangle has a base of 45 mm and a AREA $=1 / 2 \times$ BASE \times HEIGHT height of 55 mm

A triangle has a base of 110 mm and a height of 130 mm

AREA $=1 / 2 \times$ BASE \times HEIGHT

A triangle has a base of 300 mm and a height of 400 mm

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS
https://www.facebook.com/groups/254963448192823/
With an obtuse triangle, where the top (vertex) of the

FORMULA - REMAINS THE SAME

$$
\begin{gathered}
\text { AREA }=1 / 2 \times \text { BASE } \times \text { HEIGHT } \\
\text { AREA }=1 / 2 b \times h \\
\text { AREA }=\frac{b \times h}{2}
\end{gathered}
$$

AREA $=1 / 2 \times$ BASE \times HEIGHT
AREA $=\frac{600 \times 800}{2}$
$\operatorname{AREA}=\frac{480000}{2}$
AREA $=240000 \mathrm{~mm}^{2}$

PRACTICAL EXERCISE:

Cut a number of obtuse triangles from 'brown' box cardboard.

Then calculate the areas of each triangle, using a plumb line to work out the height.

BASE=

HEIGHT=

CARDBOARD TRIANGLE 1

BASE=

HEIGHT=

CARDBOARD TRIANGLE 1

BASE=

HEIGHT=

CARDBOARD TRIANGLE 1

BASE=

HEIGHT=

AREA OF A TRIANGLE - EXAMINATION QUESTIONS

SQUARE PYRAMID

Below is a model a typical village church.
The roof of the tower is a square pyramid.

1. What is the area of one side of the square pyramid?

AREA $=1 / 2 \times$ BASE \times HEIGHT

AREA $=\frac{250 \times 300}{2}$
$A R E A=\frac{75000}{2}$
AREA $=37500 \mathrm{~mm}^{2}$
2. The labels X and Y represent the same part, one side of the square pyramid. Why does Y appear taller than X ?
' Y ' appears taller than ' X ', because each side of the square pyramid is tilted towards the pyramid's VERTEX, giving the appearance of it being shorter than it actually is.
' Y ' is the side of the pyramid held perfectly straight upwards, not inclined / tilted towards the vertex. This gives us the actual 'true' shape of the triangle.

AREA $=1 / 2 \times$ BASE \times HEIGHT
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2. The labels X and Y represent the same part, one side of the square pyramid. Why does Y appear taller than X ?
\qquad
\qquad
\qquad
\qquad
\qquad

MATHEMATICAL SKILLS

MOMENTS OF FORCE (RATIOS) AND EQUILIBRIUM

AND

ASSOCIATED EXAMINATION QUESTIONS

DESIGN AND TECHNOLOGY

NOT FOR SALE OR REDISTRIBUTION
THIS MATERIAL CANNOT BE EDITED OR PLACED ON ANY OTHER FORM OF MEDIA, INCLUDING POWERPOINTS, INTRANETS, WEBSITES ETC...
WEBSITES ETC...

For animations to help explain Moments of Force and Equilibrium and questions and answers go to:

http://www.technologystudent.com/forcmom/force2.htm

For a PRACTICAL PROJECT on Equilibrium go to: http://www.technologystudent.com/forcmom/cengrav1.html and
http://www.technologystudent.com/forcmom/balance1.html

MOMENTS OF FORCE AND EQUILIBRIUM

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017
The diagram below clearly shows a state of equilibrium. The cars on either side of the seesaw are exactly the same in weight and height, in fact they are the same model. As a result, the seesaw stays level. The centre of the seesaw is called the 'fulcrum', seen here as a triangle and this is where the beam, that the cars rest on, tilts backwards and forwards. However, because of the state of equilibrium, they remain completely still.

The weight of the cars is called the effort.

The cars are in a 'state of equilibrium' because the weight, on either side, is exactly the same. The distance from each car to the fulcrum, is also the same.

If an extra car is added to the right hand side (see diagram below), then the seesaw will turn in a clockwise direction - called a clockwise moment.
Alternatively, if more cars are added to the left hand side, the seesaw will turn in an anticlockwise direction called an anticlockwise moment.

If the seesaw is to be in equilibrium, the clockwise moments must be equal to the anticlockwise moments. The seesaw is back in 'equilibrium' because a second car has been added to the left hand side, as well.

A state of equilibrium is also seen below. Each of the cars weighs the same (1 Tonne). Despite the fact that there is only one car on the left-hand side, the moments balance because, the car on the left-hand side, is twice the distance from the fulcrum, compared to the cars on the right-hand side. (see the calculation below).

CLOCKWISE MOMENTS = ANTI-CLOCKWISE MOMENTS 1 TONNE $\times 12 \mathrm{~m}=2$ TONNE $\times 6 \mathrm{~m}$ $12=12$ STATE OF EQUILIBRIUM

A state of equilibrium exists below. The single car on the left, balances the three cars on the right-hand side. This is because, the single car is three times the distance from the fulcrum, compared to the three cars on the right-hand side. Both sides of the fulcrum balance.

EXAMINATION QUESTION - MOMENTS OF FORCE AND EQUILIBRIUM
 WORLD ASSOCIATION OF TECHNOLOGY TEACHERS

1. What is equilibrium? To answer this question you must complete the diagram below, clearly demonstrating 'equilibrium' and add explanatory notes.

What is the fulcrum?

Explain why the diagram below shows a state of equilibrium, especially as there appears to be an imbalance of two cars on the right, to one car on the left. You will need to include the correct calculation and notes in your answer.

CALCULATION
NOTES/EXPLANATION

EXAMPLE EXAMINATION QUESTIONS AND ANSWERS

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017

1. The diagram below shows a lever where an effort of 200 N balances a load of 600 N . The effort force is 6 metres from the fulcrum. The load force is two metres from the fulcrum.

$$
\begin{gathered}
\text { Clockwise moment }=600 \times 2 \mathrm{Nm} \\
\text { Anti-clockwise moment }=200 \times 6 \mathrm{Nm} \\
\text { In a state of equilibrium, } \\
\text { clockwise moments }=\text { anti-clockwise moments } \\
600 \times 2 \mathrm{Nm}=200 \times 6 \mathrm{Nm} \\
1200=1200
\end{gathered}
$$

2. In the diagram below a crow-bar is used to move a 400 n load. What effort is required to move the load?

Clockwise moments $=400 \mathrm{~N} \times 0.6 \mathrm{~m}$
Anticlockwise moments $=$ effort $\times 1.5 \mathrm{~m}$
In equilibrium;
clockwise moments $=$ anti-clockwise moments
$400 \times 0.6=$ effort $\times 1.5$
effort $=\underline{400 \times 0.6}$
1.5
effort $=\underline{240}$
1.5
$=160 \mathrm{~N}$

EXAMPLE EXAMINATION QUESTIONS

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

1. The diagram below shows a lever, where an effort of 200 N balances a load of 600 N . Show how this is correct, by calculating the clockwise and anticlockwise moments.

2. In the diagram below, a crow-bar is used to move a 400 n load. What effort is required to move the load?

3. Another crow-bar is used to lever a load of 120 N . The load is 2 m from the fulcrum and the effort is 6 m from the fulcrum. What effort is required to move the load?

6 M	2 M

EFFORT
LOAD

Anticlockwise moments $=$ effort $\times 6 \mathrm{~m}$
In equilibrium;
clockwise moments = anti-clockwise moments
$120 \times 2=$ effort $\times 6$
effort $=\underline{120 \times 2}$ 6
effort $=\underline{\mathbf{2 4 0}}$
6
$=40 \mathrm{~N}$
An effort of over $\mathbf{4 0} \mathbf{N}$ is required to move the load.
4. A wheel-barrow is used to lift a load of 150 N . The wheel acts as the fulcrum. Calculate the effort required.
$\xrightarrow{1 \mathrm{M}}+$

Clockwise moments $=150 \mathrm{Nx.5m}$
Anticlockwise moments $=$ effort $\times 1.5 \mathrm{~m}$
In equilibrium;
clockwise moments $=$ anti-clockwise moments
$150 \times .5=$ effort $\times 1.5$
effort $=150 \times .5$
1.5
effort $=\underline{75}$
1.5

$$
=50 \mathrm{~N}
$$

An effort of over 50 N is required to lift the wheel-barrow.

EXAMPLE EXAMINATION QUESTIONS

WORLD ASSOCIATION OF TECHNOLOGY TEACHER
https://www.facebook.com/groups/254963448192823
www.technologystudent.com © 2017
3. Another crow-bar is used to lever a load of 120 N . The load is 2 m from the fulcrum and the effort is 6 m from the fulcrum. What effort is required to move the load?

4. A wheel-barrow is used to lift a load of 150 N . The wheel acts as the fulcrum. Calculate the effort required.

5. A wheel-barrow is used to lift a load of 200 N . The wheel acts as the fulcrum. Calculate the effort required.

Clockwise moments $=200 \mathrm{~N} \times 1 \mathrm{~m}$
Anticlockwise moments $=$ effort $\times 4 \mathrm{~m}$
In equilibrium;
clockwise moments $=$ anti-clockwise moments

$$
\begin{gathered}
200 \times 1=\text { effort } \times 4 \\
\text { effort }=\frac{200 \times 1}{4} \\
\text { effort }=\frac{200}{4} \\
=50 \mathrm{~N}
\end{gathered}
$$

An effort of over $50 \mathbf{N}$ is required to lift the wheel-barrow.
6. A metal bar is used to lever a load of 150 N . The load is 1 m from the fulcrum and the effort is 5 m from the fulcrum. What effort is required to move the load?

Clockwise moments $=150 \mathrm{Nx} 1 \mathrm{~m}$
Anticlockwise moments $=$ effort $\times 5 \mathrm{~m}$
In equilibrium;
clockwise moments $=$ anti-clockwise moments

$$
\begin{gathered}
150 \times 1=\text { effort } \times 5 \\
\text { effort }=\frac{150 \times 1}{5} \\
\text { effort }=\frac{150}{5} \\
=30 \mathrm{~N}
\end{gathered}
$$

An effort of over $\mathbf{4 0} \mathbf{N}$ is required to move the load.
5. A wheel-barrow is used to lift a load of 200N. The wheel acts as the fulcrum. Calculate the effort required.

6. A metal bar is used to lever a load of 150 N . The load is 1 m from the fulcrum and the effort is 5 m from the fulcrum. What effort is required to move the load?

Steel bar lever
150 N
7. Another metal bar is used to lever a load of 200N. The load is 3 m from the fulcrum and the effort is 2 m from the fulcrum. What effort is required to move the load?

Clockwise moments $=200 \mathrm{~N} \times 3 \mathrm{~m}$
Anticlockwise moments $=$ effort $\times 2 \mathrm{~m}$
In equilibrium;
clockwise moments $=$ anti-clockwise moments

$$
\begin{gathered}
200 \times 3=\text { effort } \times 2 \\
\text { effort }=\frac{200 \times 3}{2}
\end{gathered}
$$

$$
\text { effort }=\underline{600}
$$

$$
2
$$

$$
=300 \mathrm{~N}
$$

An effort of over $\mathbf{3 0 0} \mathbf{N}$ is required to move the load.
7. Another metal bar is used to lever a load of 200 N . The load is 3 m from the fulcrum and the effort is 2 m from the fulcrum. What effort is required to move the load?

MATHEMATICAL SKILLS

RATIOS
 AND
 ASSOCIATED EXAMINATION QUESTIONS

DESIGN AND TECHNOLOGY

NOT FOR SALE OR REDISTRIBUTION

THIS MATERIAL CANNOT BE EDITED OR PLACED ON ANY OTHER FORM OF MEDIA, INCLUDING POWERPOINTS, INTRANETS, WEBSITES ETC...

RATIOS - EXAMPLES

DEFINITION:

A ratio is the mathematical relationship between two or more numbers.

An example of a ratio is:

An example of a ratio is:

An example of a ratio is:

Here we see 2 blue circles compared to 3 red circles.

The circle below shows the area of blue in ratio with the area of red. There are 3 areas of red to just 1 area of blue.

BLUE : RED

$$
3: 1
$$

RATIOS - QUESTIONS

DEFINITION:

A ratio is the mathematical relationship between two or more numbers.

1. What is the ratio of blue to red dots?:

EXPLANATION:

2. What is the ratio of blue to red dots?:

EXPLANATION:

2. What is the ratio of blue to red dots?

EXPLANATION:
\qquad
\qquad
The circle below shows the area of blue in ratio with the area of red. What is the ratio of blue to red?

BLUE : RED

RATIOS - EXAMPLES

What is the ratio of the blue area to the red area?

BLUE : RED 11:1

The circle below is divided into blue and red areas. The ratio of the blue to the red is 10:2, because there are 10 blue sections compared to the 2 red sections. This is the same as 5:1

The circle below is divided into blue and red areas. The ratio of the blue to the red is $9: 3$, because there are 10 blue sections compared to the 2 red sections. This is the same as 5:1

BLUE : RED 9:3
 Which is the same as, 3:1

RATIOS - QUESTIONS

What is the ratio of the blue area to the red area?

BLUE: RED

The circle below is divided into blue and red areas. What is the ratio of blue to red sections?

The circle below is divided into blue and red areas. What is the ratio of blue to red sections?

RATIOS - EXAMPLES

Part of a recipe to serve two people, requires 4 cups of flour and 1 cup of water.

If the has to be scaled up to serve 10 people, how many cups of flour and water will be required as part of the recipe.

	FLOUR	WATER	
SERVES TWO PEOPLE $=$	4	$:$	1

To find the number by which the original ratio numbers are multiplied, divide the new number of people to be served (10) by the old number of people to be served (2).

10 PEOPLE
 $$
=5
$$
 2 PEOPLE

Then, multiply each number of the original ratio by the answer 5 , to find the new

4x5 :
1×5 amount of flour and water.

The new number of cups of flour and water are seen opposite

FLOUR
20 :

WATER
5

If the has to be scaled up to serve 12 people, how many cups of flour and water will be required as part of the recipe.

	FLOUR	WATER	
SERVES TWO PEOPLE $=$	4	$:$	1

To find the number by which the original ratio numbers are multiplied, divide the new number of people to be served (12) by the old number of people to be served (2).

Then, multiply each number of the original ratio by the answer 6 , to find the new amount of flour and water.

The new number of cups of flour and water are seen opposite

12 PEOPLE
 $=6$
 2 PEOPLE

$$
4 \times 6 \quad: \quad 1 x 6
$$

FLOUR
WATER
24 :

RATIOS - QUESTIONS

Part of a recipe to serve two people, requires 4 cups of flour and 1 cup of water.

If the has to be scaled up to serve 10 people, how many cups of flour and water will be required as part of the recipe.

FLOUR
4

EXPLANATION:
\qquad
\qquad
\qquad
\qquad
\qquad

If the has to be scaled up to serve 12 people, how many cups of flour and water will be required as part of the recipe.

FLOUR
4
WATER
1

USING RATIOS TO SCALE DRAWINGS - EXAMPLES

The rectangle seen opposite has a height of 200 mm and a length of 600

The ratio of the HEIGHT to the LENGTH is worked out by dividing the large number by the smaller number.

HEIGHT : LENGTH
 $$
\frac{600}{200}=3
$$

This means that the ratio is:

1:3

If the height is to be increased to 400 mm and the ratio between the height and length is the same, what is the new measurement of the length?

1:3

400 mm : ?

Quite simply multiply the 400 mm by 3 to find the new measurement of the length

$400 \times 3=1200$
 400mm : 1200mm

If the height is to be increased to 600 mm and the ratio between the height and length is the same, what is the new measurement of the length?

1:3

600 mm : ?

Quite simply multiply the 600 mm by 3 to find the new measurement of the length

$$
600 \times 3=1800
$$

USING RATIOS TO SCALE DRAWINGS - EXAMPLES

If the height is to be increased to 500 mm and the ratio between the height and length is the same, what is the new measurement of the length?

1:3

500mm : ?

Quite simply multiply the 400 mm by 3 to find the new measurement of the length

$500 \times 3=1500$

500 mm : 1500 mm

If the height is to be decreased to 100 mm and the ratio between the height and length is the same, what is the new measurement of the length?

1:3

100 mm : ?

Quite simply multiply the 400 mm by 3 to find the new
measurement of the length

$$
\begin{gathered}
100 \times 3=300 \\
100 \mathrm{~mm}: 300 \mathrm{~mm}
\end{gathered}
$$

If the height is to be decreased to 800 mm and the ratio between the height and length is the same, what is the new measurement of the length?
1:3

800mm : ?

Quite simply multiply the 400 mm by 3 to find the new measurement of the length
$800 \times 3=2400$
$800 \mathrm{~mm} \quad: \quad 2400 \mathrm{~mm}$

USING RATIOS TO SCALE DRAWINGS - QUESTIONS

The rectangle seen opposite has a height of 200 mm and a length of 600

The ratio of the HEIGHT to the LENGTH is worked out by dividing the large number by the smaller number.

HEIGHT : LENGTH
 $$
\frac{600}{200}=3
$$

This means that the ratio is:

1:3

If the height is to be increased to 400 mm and the ratio between the height and length is the same, what is the new measurement of the length?

> 1:3

400 mm : ?

EXPLANATION: \qquad

CALCULATION:

If the height is to be increased to 600 mm and the ratio between the height and length is the same, what is the new measurement of the length?

1:3

600mm

EXPLANATION: \qquad

USING RATIOS TO SCALE DRAWINGS - QUESTIONS

If the height is to be increased to 500 mm and the ratio between the height and length is the same, what is the new measurement of the length?

1:3
 500 mm : ?

EXPLANATION:

\qquad

CALCULATION:

If the height is to be decreased to 100 mm and the ratio between the height and length is the same, what is the new measurement of the length?

$1: 3$
 100 mm : ?

EXPLANATION: \qquad

CALCULATION:

If the height is to be decreased to 800 mm and the ratio between the height and length is the same, what is the new measurement of the length?

$1: 3$
 800mm : ?

EXPLANATION: \qquad

CALCULATION:

FURTHER EXAMPLE QUESTIONS

PART ONE

The question is about alternative energy. A local wind farm produces 4 terawatt hours of electricity over a year. At the same time, a solar farm produced 0.5 terawatt hours of electrical power. What is the ratio Wind farm : Solar Power?

$$
\begin{array}{ccc}
\text { WIND FARM } & \vdots & \text { SOLAR POWER } \\
4 & : & 0.5
\end{array}
$$

To ensure that final ratio is in whole numbers, divide the wind power total by the solar power total.

$$
\frac{\text { WIND FARM }}{\text { SOLAR POWER }}=\frac{4}{0.5}=8
$$

Then take the answer and place it on the wind power side of the ratio and the 1 on the solar power side.
WIND FARM : SOLAR POWER
8 : 1

PART TWO

The total alternative energy produced by the wind farm is 4 terawatt hours. The ratio between wind power and all other forms of alternative energy produced in the area is 1:6. What is the total amount of energy produced by the other alternative energy forms?

WIND FARM : | ALL OTHER FORMS OF |
| :--- |
| |
| |
| ALTERNATIVE ENERGY |

1

6

4 terawatt hours : ?

To calculate the answer, take the 4 terawatts and multiply by 6 .

FURTHER EXAMPLE QUESTIONS

The total amount of renewable energy produced in 2016 was 90 Terawatt hours (Twh).

The ratio of hydroelectricity compared to other renewable energy forms was 1:12. What amount of energy was produced through hydroelectricity ?

HYDROELECTRICITY : OTHER RENEWABLE FORMS

1:12
Add both numbers (1 and 12)
together. This gives us 13
Then, divide the total amount of renewable energy (90 terawatt hours) by 13

$\frac{90}{13}=6.92$ terawatt hours

If total amount of renewable energy produced in 2016 was 100 Terawatt hours (Twh) AND the ratio of hydroelectricity compared to other renewable energy forms was 1:9.

What amount of energy was produced through hydroelectricity ?

HYDROELECTRICITY : OTHER RENEWABLE FORMS

$$
1: 9
$$

Add both numbers (1 and)
together. This gives us 10

Then, divide the total amount of renewable energy (100 terawatt hours) by 10.

100
 10
 = 10 terawatt hours

FURTHER QUESTIONS

PART ONE

The question is about alternative energy. A local wind farm produces 4 terawatt hours of electricity over a year. At the same time, a solar farm produced 0.5 terawatt hours of electrical power. What is the ratio Wind farm : Solar Power?

EXPLANATION: \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

PART TWO

The total alternative energy produced by the wind farm is 4 terawatt hours. The ratio between wind power and all other forms of alternative energy produced in the area is

1:6. What is the total amount of energy produced by the other alternative energy forms?

WIND FARM	$:$	ALL OTHER FORMS OF
		ALTERNATIVE ENERGY

EXPLANATION: \qquad

FURTHER QUESTIONS

The total amount of renewable energy produced in 2016 was 90 Terawatt hours (Twh).
The ratio of hydroelectricity compared to other renewable energy forms was 1:12.
What amount of energy was produced through hydroelectricity?
HYDROELECTRICITY : OTHER RENEWABLE FORMS
1:12

EXPLANATION: \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

If total amount of renewable energy produced in 2016 was 100 Terawatt hours (Twh) AND the ratio of hydroelectricity compared to other renewable energy forms was 1:9.

What amount of energy was produced through hydroelectricity ?

HYDROELECTRICITY
 OTHER RENEWABLE FORMS

1:9

EXPLANATION: \qquad
\qquad
\qquad
\qquad
\qquad

DEFINITION: A cone has one surface with a circular base. The vertex is directly above the centre of the circular base.

FORMULA

$v=1 / 3 \pi r^{2} h$
the same as $v=\frac{\pi r^{2} h}{3}$
$\mathrm{pi}(\pi)$ is 3.14

If the height (h) is 50 mm and the radius is 40 mm

Then:

$$
\begin{aligned}
& v=1 / 3 \pi r^{2} h \\
& v=\frac{1}{3} \times 3.14 \times(40 \times 40) \times 50 \\
& v=\frac{1}{3} \times 251200 \\
& v=\frac{251200}{3}=83733.33 \mathrm{~mm}^{3}
\end{aligned}
$$

EXAMINATION QUESTIONS - VOLUME OF A CONE

$\mathrm{V}=1 / 3 \pi r^{2} \mathrm{~h} \begin{gathered}\text { Using the formula opposite, calculate the volumes of the } \\ \text { following cones. (pi (} \pi \text {) is } 3.14 \text {) }\end{gathered}$ following cones. ($\mathrm{pi}(\mathrm{T})$ is 3.14)

If the height (h) is 60 mm and the radius is 35 mm

$$
\begin{aligned}
& \mathrm{v}=1 / 3 \pi r^{2} \mathrm{~h} \\
& \mathrm{v}=\frac{1}{3} \times 3.14 \times(35 \times 35) \times 60 \\
& \mathrm{v}=\frac{1}{3} \times 3.14 \times(1225) \times 60 \\
& \mathrm{v}=\frac{1}{3} \times 230790 \\
& \mathrm{v}=\frac{230790}{3}=76930 \mathrm{~mm}^{3}
\end{aligned}
$$

If the height (h) is 65 mm and the radius is 45 mm

$$
\begin{aligned}
& v=1 / 3 \pi r^{2} h \\
& v=\frac{1}{3} \times 3.14 \times(45 \times 45) \times 65 \\
& v=\frac{1}{3} \times 3.14 \times(2025) \times 65 \\
& v=\frac{1}{3} \times 413302.5 \\
& v=413302.5=137767.5 \mathrm{~mm}^{3}
\end{aligned}
$$ 3

If the height (h) is 70 mm and the radius is 50 mm

$$
\begin{aligned}
& v=1 / 3 \pi r^{2} h \\
& v=\frac{1}{3} \times 3.14 \times(50 \times 50) \times 70 \\
& v=\frac{1}{3} \times 3.14 \times(2500) \times 70 \\
& v=\frac{1}{3} \times 549500 \\
& v=549500=183166.66 \mathrm{~mm}^{3}
\end{aligned}
$$

EXAMINATION QUESTIONS - VOLUME OF A CONE

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017
$\mathrm{V}=1 / 3 \pi r^{2} \mathrm{~h}$ Using the formula opposite, calculate the volumes of the following cones. (pi (Π) is 3.14)

If the height (h) is 60 mm and the radius is 35 mm

If the height (h) is 65 mm and the radius is 45 mm

If the height (h) is 70 mm and the radius is 50 mm

MATHEMATICAL SKILLS

VOLUME OF A CUBE AND

ASSOCIATED GEOMETRICAL SHAPES

DESIGN AND TECHNOLOGY

NOT FOR SALE OR REDISTRIBUTION
THIS MATERIAL CANNOT BE EDITED OR PLACED ON ANY OTHER
FORM OF MEDIA, INCLUDING POWERPOINTS, INTRANETS, WEBSITES ETC...

HOW TO CALCULATE THE VOLUME OF A CUBE

DEFINITION: A cube is a solid object, composed of six equal squares, with a 90 degree angle between adjacent sides.

All the sides of a cube are the same measurement. There are two similar formulas for calculating a cube's volume.

$\operatorname{VOLUME}(\mathrm{V})=\mathrm{A} \times \mathrm{A} \times \mathrm{A}$ ORA ${ }^{3}$

EXAMPLE 1

If the measurement of one side is 100 mm :

VOLUME $=100 \mathrm{~mm} \times 100 \mathrm{~mm} \times 100 \mathrm{~mm}$ VOLUME $=1000000 \mathrm{~mm}^{3}$ or $1000 \mathrm{~cm}^{3}$

EXAMPLE 2

If the measurement of one side is 320 mm :
VOLUME $=320 \mathrm{~mm} \times 320 \mathrm{~mm} \times 320 \mathrm{~mm}$ VOLUME $=32768000 \mathrm{~mm}^{3}$ or $32768 \mathrm{~cm}^{3}$

QUESTION 1

What is the volume of the cube shown opposite?

$\operatorname{VOLUME}(\mathrm{V})=\mathrm{A} \times \mathrm{A} \times \mathrm{A}$ OR A^{3}

If the measurement of one side is 90 mm :
VOLUME $=90 \mathrm{~mm} \times 90 \mathrm{~mm} \times 90 \mathrm{~mm}$
VOLUME $=729000 \mathrm{~mm}^{3}$ or $729 \mathrm{~cm}^{3}$

QUESTION 2

What is the volume of the cube shown opposite?

$$
\begin{gathered}
\operatorname{VOLUME}(\mathrm{V})=\mathrm{A} \times \mathrm{A} \times \mathrm{A} \\
O R \mathrm{~A}^{3}
\end{gathered}
$$

If the measurement of one side is 120 mm :
VOLUME $=120 \mathrm{~mm} \times 120 \mathrm{~mm} \times 120 \mathrm{~mm}$ VOLUME $=1728000 \mathrm{~mm}^{3}$ or $1728 \mathrm{~cm}^{3}$

QUESTION 3

What is the volume of the cube shown opposite?

$\operatorname{VOLUME}(\mathrm{V})=\mathrm{A} \times \mathrm{A} \times \mathrm{A}$ OR A^{3}

If the measurement of one side is 55 mm :
VOLUME $=55 \mathrm{~mm} \times 55 \mathrm{~mm} \times 55 \mathrm{~mm}$
VOLUME $=166375 \mathrm{~mm}^{3}$ or $166.375 \mathrm{~cm}^{3}$

QUESTION 1

What is the volume of the cube shown opposite?
$\operatorname{VOLUME}(\mathrm{V})=\mathrm{A} \times \mathrm{A} \times \mathrm{A}$ OR A ${ }^{3}$
\qquad
\qquad
\qquad
\qquad

QUESTION 2

What is the volume of the cube shown opposite?
$\operatorname{VOLUME}(\mathrm{V})=\mathrm{A} \times \mathrm{A} \times \mathrm{A}$ OR A ${ }^{3}$
\qquad
\qquad
\qquad
\qquad

QUESTION 3

What is the volume of the cube shown opposite?

$$
\begin{gathered}
\operatorname{VOLUME}(\mathrm{V})=A \times A \times A \\
O R A^{3}
\end{gathered}
$$

EXAM QUESTION - CUBE

A solid cube of aluminium (A) has 200 mm sides. However, a smaller area in the form of a cube with 100 mm length sides, has been machined from the top surface (B).
What is the volume of the finished 3D shape?
How to work out the answer:
Start by treating both A and B as solid cubes.
Work out the volume of each cube A and B

CUBE 'A'

If the measurement of one side is 200 mm :
VOLUME $=200 \mathrm{~mm} \times 200 \mathrm{~mm} \times 200 \mathrm{~mm}$ VOLUME $=8000000 \mathrm{~mm}^{3}$ or $8000 \mathrm{~cm}^{3}$

CUBE 'B'
If the measurement of one side is 100 mm :
VOLUME $=100 \mathrm{~mm} \times 100 \mathrm{~mm} \times 100 \mathrm{~mm}$
VOLUME $=1000000 \mathrm{~mm}^{3}$ or $1000 \mathrm{~cm}^{3}$

Then, subtract the volume of B away from the volume of A, to find the final overall volume

FINAL VOLUME $=\mathrm{A}-\mathrm{B}$
FINAL VOLUME $=8000000 \mathrm{~mm}^{3}-1000000 \mathrm{~mm}^{3}$
FINAL VOLUME $=7000000 \mathrm{~mm}^{3}$ or $7000 \mathrm{~cm}^{3}$

EXAM QUESTION - CUBE

A solid cube of aluminium (A) has 200mm sides. However, a smaller area in the form of a cube with 100 mm length sides, has been machined from the top surface (B).
What is the volume of the finished 3D shape? Explain your working out.

EXAM QUESTION - CUBE

The unusual solid geometrical shape shown opposite can be treated as two cubes.

Calculate the entire volume of the shape/form.

Explain your working out.

The measurement of a side of cube A is clearly shown as 150 mm
To work out the length of one side of cube B, simply subtract 150 mm from the overall height of the shape.

225mm (overall height) - 150 mm (length of one side of cube A)
$225 m m-150 \mathrm{~mm}=75 \mathrm{~mm}$ (this is the length of one side of cube B)

Then work out the volume of cubes A and B

CUBE 'A'

If the measurement of one side is 150 mm :

$$
\begin{array}{ll}
\text { VOLUME }=150 \mathrm{~mm} \times 150 \mathrm{~mm} \times 150 \mathrm{~mm} & \text { VOLUME }=75 \mathrm{~mm} \times 75 \mathrm{~mm} \times 75 \mathrm{~mm} \\
\text { VOLUME }=3375000 \mathrm{~mm}^{3} \text { or } 3375 \mathrm{~cm}^{3} & \text { VOLUME }=421875 \mathrm{~mm}^{3} \text { or } 421.875 \mathrm{~cm}^{3}
\end{array}
$$

Then, add the volume of cube B with the volume of cube A, to find the final overall volume

FINAL VOLUME $=\mathrm{A}+\mathrm{B}$
FINAL VOLUME $=3375000 \mathrm{~mm}^{3}+421875 \mathrm{~mm}^{3}$
FINAL VOLUME $=3796875 \mathrm{~mm}^{3}$ or $3796.875 \mathrm{~cm}^{3}$

EXAM QUESTION - CUBE

The unusual solid geometrical shape shown opposite can be treated as two cubes.

Calculate the entire volume of the shape/form.

Explain your working out.

FORMOF MEDIA, INCLUDING POWERPOINTS, INTRANETS, WEBSITES

 ETC...
HOW TO CALCULATE THE VOLUME OF A CYLINDER

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS
https://www.facebook.com/groups/254963448192823/
www.technologystudent.com © 2017
DEFINITION: A three dimensional geometrical shape, that has a circle at each end of a single curved surface.

In order to calculate the volume of a cylinder, the height and radius of the circular top /bottom must be known. The following formula is used to calculate the volume.

$$
\begin{gathered}
\underset{\text { volume }}{\mathrm{V}}=\underset{\mathrm{pix} \times \text { radius²} \times \text { height }}{ } \mathrm{r}^{2} \mathrm{~m} \\
\pi(\mathrm{pi})=3.14
\end{gathered}
$$

Calculate the volume of the cylinders seen below.

For the purpose of these calculations

$$
\pi(p i)=3.14
$$

$$
v=\pi r^{2 h}
$$

volume $=3.14 \times 60 \mathrm{~mm} \times 60 \mathrm{~mm} \times 120 \mathrm{~mm}$
volume $=1356480 \mathrm{~mm}^{3}$

or

volume $=1356.480 \mathrm{~cm}^{3}$

```
\[
v=\pi r^{2} h
\]
\[
\text { volume }=3.14 \times 80 \mathrm{~mm} \times 80 \mathrm{~mm} \times 140 \mathrm{~mm}
\]
\[
\text { volume }=2813440 \mathrm{~mm}^{3}
\]
or
\[
\text { volume }=2813.440 \mathrm{~cm}^{3}
\]
```


Calculate the volume of the cylinders seen below.

For the purpose of these calculations

$$
\pi(p i)=3.14
$$

FORMULA

$$
v=\pi r^{2 h}
$$

volume $=$ pi x radius $^{2} \mathrm{x}$ height

$$
\pi(\mathrm{pi})=3.14
$$

\qquad
\qquad
\qquad
\qquad
\qquad

The solid steel object seen below, has been manufactured on an engineering centre lathe. It is one solid piece. Calculate the total volume.

In order to calculate the entire volume of the engineered solid, it is treated as two separate parts. Part A is the smaller cylinder and part B is the larger cylinder.

PART A
$$
v=\pi r^{2} h
$$
volume $=3.14 \times 20 \mathrm{~mm} \times 20 \mathrm{~mm} \times 30 \mathrm{~mm}$
volume $=37680 \mathrm{~mm}^{3}$
or
volume $=37.680 \mathrm{~cm}^{3}$

Then add both volumes together, to find the overall volume of the engineered object.

FINAL VOLUME = A + B
FINAL VOLUME $=37680 \mathrm{~mm}^{3}+452160 \mathrm{~mm}^{3}$
FINAL VOLUME $=489840 \mathrm{~mm}^{3}$ or $489.84 \mathrm{~cm}^{3}$

EXAMINATION QUESTION - CYLINDER - VOLUME

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017
The solid steel object seen below, has been manufactured on an engineering centre lathe. It is one solid piece. Calculate the total volume.

In order to calculate the entire volume of the engineered solid, it is treated as two separate parts. Part A is the smaller cylinder and part B is the larger cylinder.

The solid cylindrical object seen below, is engineered from mild steel, with a large machined 'blind' hole, in the top surface.

Calculate the volume of the engineered object.

The cylindrical object is treated as two separate cylinders.

Part A is the 'blind' hole. Part B is the cylinder.

PART A

$$
v=\pi r^{2} h
$$

volume $=3.14 \times 30 \mathrm{~mm} \times 30 \mathrm{~mm} \times 40 \mathrm{~mm}$
volume $=113040 \mathrm{~mm}^{3}$
or
volume $=113.040 \mathrm{~cm}^{3}$

PART B

$$
v=\pi r^{2} h
$$

volume $=3.14 \times 60 \mathrm{~mm} \times 60 \mathrm{~mm} \times 130 \mathrm{~mm}$
volume $=1469520 \mathrm{~mm}^{3}$
or
volume $=1469.520 \mathrm{~cm}^{3}$

Then subtract the volume of part A from the volume of part B, to find the overall volume of the engineered object.

$$
\begin{aligned}
& \text { FINAL VOLUME }=\mathrm{B}-\mathrm{A} \\
& \text { FINAL VOLUME }=1469520 \mathrm{~mm}^{3}-113040 \mathrm{~mm}^{3} \\
& \text { FINAL VOLUME }=1356480 \mathrm{~mm}^{3} \text { or } 1356.48 \mathrm{~cm}^{3}
\end{aligned}
$$

The solid cylindrical object seen below, is engineered from mild steel, with a large machined 'blind' hole, in the top surface.

Calculate the volume of the engineered object.

The cylindrical object is treated as two separate cylinders.

Part A is the 'Blind' hole.
Part B is the cylinder.

DEFINITION: A Regular Square Pyramid has a square base with triangular sides. The apex (highest point), is inline with the centre of the square base. A square pyramid is a relatively common geometrical shape/form.

> CALCULATE THE AREA OF BASE FIRST AREA OF BASE $=$ LENGTH ${ }^{2}$
> AREA OF BASE $=60 \mathrm{~mm} \times 60 \mathrm{~mm}=3600 \mathrm{~mm}^{2}$

THEN APPLY THE FOLLOWING FORMULA

$$
\begin{aligned}
\text { Volume } & =\frac{1}{3} \times \text { Base } \times \text { Height } \\
V & =\frac{1}{3} \times 3600 \mathrm{~mm} \times 100 \mathrm{~mm} \\
V & =\frac{1}{3} \times 360000 \mathrm{~mm} \\
V & =\frac{360000 \mathrm{~mm}}{3}=120000 \mathrm{~mm}^{3}
\end{aligned}
$$

FORMULA

Volume $=\frac{1}{3} \times$ Base \times Height

$$
V=\frac{1}{3} \times B \times H
$$

CALCULATE THE AREA OF BASE FIRST AREA OF BASE $=$ LENGTH ${ }^{2}$
AREA OF BASE $=80 \mathrm{~mm} \times 80 \mathrm{~mm}=6400 \mathrm{~mm}^{2}$

THEN APPLY THE FOLLOWING FORMULA

$$
\text { Volume }=\frac{1}{3} \times \text { Base } \times \text { Height }
$$

$$
V=\frac{1}{3} \times 6400 \mathrm{~mm} \times 120 \mathrm{~mm}
$$

$$
V=\frac{1}{3} \times 768000 \mathrm{~mm}
$$

$$
\mathrm{V}=\frac{768000 \mathrm{~mm}}{3}=256000 \mathrm{~mm}^{3}
$$

CALCULATE THE AREA OF BASE FIRST AREA OF BASE $=$ LENGTH ${ }^{2}$
AREA OF BASE $=100 \mathrm{~mm} \times 100 \mathrm{~mm}=10000 \mathrm{~mm}^{2}$

THEN APPLY THE FOLLOWING FORMULA

$$
\text { Volume }=\frac{1}{3} \times \text { Base } \times \text { Height }
$$

$$
\mathrm{V}=\frac{1}{3} \times 10000 \mathrm{~mm} \times 140 \mathrm{~mm}
$$

$$
V=\frac{1}{3} \times 1400000 \mathrm{~mm}
$$

$$
V=\frac{1400000 \mathrm{~mm}}{3}=466666.66 \mathrm{~mm}^{3}
$$

EXAMINATION QUESTIONS - SQUARE PYRAMIDS

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

FORMULA

$$
\begin{aligned}
\text { Volume } & =\frac{1}{3} \times \text { Base } \times \text { Height } \\
V & =\frac{1}{3} \times B \times H
\end{aligned}
$$

CALCULATE THE AREA OF BASE FIRST AREA OF BASE = LENGTH ${ }^{2}$

 AREA OF BASE =
THEN APPLY THE FOLLOWING FORMULA

 Volume $=\frac{1}{3} \times$ Base \times HeightCALCULATE THE AREA OF BASE FIRST AREA OF BASE = LENGTH ${ }^{2}$ AREA OF BASE =

THEN APPLY THE FOLLOWING FORMULA

 Volume $=\frac{1}{3} \times$ Base \times Height
MATHEMATICAL SKILLS

VOLUME OF A RECTANGULAR PRISM AND ASSOCIATED GEOMETRICAL SHAPES

DESIGN AND TECHNOLOGY

NOT FOR SALE OR REDISTRIBUTION
THIS MATERIAL CANNOT BE EDITED OR PLACED ON ANY OTHER
FORM OF MEDIA, INCLUDING POWERPOINTS, INTRANETS, WEBSITES ETC...

HOW TO CALCULATE THE VOLUME OF A RECTANGULAR PRISM

DEFINITION: A rectangular prism is a solid object, composed of six rectangles, with a 90 degree angle between adjacent sides. Opposite sides of a rectangular prism are equal and parallel to each other.

Unlike a cube, the area of the sides of a rectangular prism / cuboid are not the same, consequently the formula for calculating the volume is as follows:

FORMULA

V=LxWxH

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/
www.technologystudent.com © 2017 V.Ryan © 2017

VOLUME = LENGTH X WIDTH X HEIGHT $\mathrm{V}=\mathrm{L} \times \mathrm{W} \times \mathrm{H}$

 rectangular prism shown opposite?
$V=L \times W \times H$
$V=50 \times 40 \times 100$
$V=200000 \mathrm{~mm}^{3}$
or
$V=200 \mathrm{~cm}^{3}$

EXAM QUESTION - RECTANGULAR PRISM

What is the volume of the

rectangular prism shown opposite?

$\mathrm{V}=\mathrm{L} \times \mathrm{W} \times \mathrm{H}$
 $\mathrm{V}=40 \times 50 \times 120$
 $\mathrm{V}=240000 \mathrm{~mm}^{3}$

or
$\mathrm{V}=240 \mathrm{~cm}^{3}$

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017
What is the volume of the rectangular prism shown opposite?
$V=L \times W \times H$
$V=50 \times 60 \times 90$
$V=270000 \mathrm{~mm}^{3}$
or
$\mathrm{V}=270 \mathrm{~cm}^{3}$

What is the volume of the rectangular prism shown opposite?
$\mathrm{V}=\mathrm{L} \times \mathrm{W} \times \mathrm{H}$
$\mathrm{V}=70 \times 80 \times 100$
$\mathrm{V}=560000 \mathrm{~mm}^{3}$
or
$\mathrm{V}=560 \mathrm{~cm}^{3}$

EXAM QUESTION - RECTANGULAR PRISM

Calculate the volume of each
rectangular prism, shown below.

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS
https://www.facebook.com/groups/254963448192823/
www.technologystudent.com © 2017 V.Ryan © 2017
$\mathrm{V}=\mathrm{L} \times \mathrm{W} \times \mathrm{H}$

$\mathrm{V}=\mathrm{L} \times \mathrm{W} \times \mathrm{H}$

EXAM QUESTION - RECTANGULAR PRISM

The solid geometrical shape shown opposite can be treated as two rectangular prisms.

Calculate the entire volume of the shape/form

Explain your working out.

First, treat the shape / form as two separate rectangular prisms, Prism A and Prism B
Work out the volume of rectangular prism A and B

VOLUME OF ‘A’ $\mathrm{V}=\mathrm{L} \times \mathrm{W} \times \mathrm{H}$

VOLUME $=100 \mathrm{~mm} \times 110 \mathrm{~mm} \times 120 \mathrm{~mm}$
VOLUME $=1320000 \mathrm{~mm}^{3}$ or $1320 \mathrm{~cm}^{3}$

VOLUME OF ‘B’ $\mathrm{V}=\mathrm{L} \times \mathrm{W} \times \mathrm{H}$

VOLUME $=50 \mathrm{~mm} \times 55 \mathrm{~mm} \times 60 \mathrm{~mm}$
VOLUME $=165000 \mathrm{~mm}^{3}$ or $165 \mathrm{~cm}^{3}$

Then, add the volume of rectangular prism A and the volume of rectangular prism B , to find the final overall volume.

FINAL VOLUME = A + B
FINAL VOLUME $=1320000 \mathrm{~mm}^{3}+165000 \mathrm{~mm}^{3}$
FINAL VOLUME $=1485000 \mathrm{~mm}^{3}$ or $1485 \mathrm{~cm}^{3}$

EXAM QUESTION - RECTANGULAR CUBE

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

The unusual solid geometrical shape shown opposite can be treated as two rectangular prisms.

Calculate the entire volume of the shape/form Explain your working out.

EXAM QUESTION - RECTANGULAR PRISMS

The ususal geometrical shape below, was a single aluminium rectangular prism. A section (section B) was then machined away to produce the shape we now see.

What is the volume of the finished 3D shape? Explain your working out.

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/
www.technologystudent.com © 2017 V.Ryan © 2017
To answer this question, the best approach is to treat the rectangular prism as two separate rectangular prisms, A and B. The length, width and height of each of the prisms can be clearly seen on the diagram above.

How to work out the answer:
Start by treating both A and B as solid rectangular prisms.
Work out the volume of each rectangular A and B

' A '

$V=L \times W \times H$
VOLUME $=100 \mathrm{~mm} \times 110 \mathrm{~mm} \times 120 \mathrm{~mm}$
VOLUME $=1320000 \mathrm{~mm}^{3}$ or $1320 \mathrm{~cm}^{3}$
'B'
$\mathrm{V}=\mathrm{L} \times \mathrm{W} \times \mathrm{H}$
VOLUME $=50 \mathrm{~mm} \times 55 \mathrm{~mm} \times 80 \mathrm{~mm}$
VOLUME $=220000 \mathrm{~mm}^{3}$ or $220 \mathrm{~cm}^{3}$

Then, subtract the volume of B from the volume of A, to find the final overall volume of the geometrical shape.

FINAL VOLUME $=\mathrm{A}-\mathrm{B}$
FINAL VOLUME $=1320000 \mathrm{~mm}^{3}-220000 \mathrm{~mm}^{3}$
FINAL VOLUME $=1100000 \mathrm{~mm}^{3}$ or $1100 \mathrm{~cm}^{3}$

EXAM QUESTION - RECTANGULAR PRISMS

The ususal geometrical shape below, was a single aluminium rectangular prism. A section (section B) was then machined away to produce the shape we now see.

What is the volume of the finished 3D shape? Explain your working out.

MATHEMATICS - VOLUMES - REVISION CARDS

All the sides of a cube are the same measurement. There are two similar formulas for calculating a cube's volume.

VOLUME (V) =A x A x A OR A

EXAMPLE 1
If the measurement of one side is 100 mm :

$$
\text { VOLUME }=100 \mathrm{~mm} \times 100 \mathrm{~mm} \times 100 \mathrm{~mm}
$$ VOLUME $=1000000 \mathrm{~mm}^{3}$ or $1000 \mathrm{~cm}^{3}$

$$
\text { EXAMPLE } 2
$$

If the measurement of one side is 320 mm : VOLUME $=320 \mathrm{~mm} \times 320 \mathrm{~mm} \times 320 \mathrm{~mm}$ VOLUME $=32768000 \mathrm{~mm}^{3}$ or $32768 \mathrm{~cm}^{3}$

HOW TO CALCULATE THE VOLUME

 OF A RECTANGULAR PRISMDEFINITION: A rectangular prism is a solid object, composed of six rectangles, with a 90 degree angle between adjacent sides. Opposite sides of a rectangular prism are equal and parallel.

Unlike a cube, the area of the sides of a rectangular prism / cuboid are not the same, consequently the formula for calculating the volume is as follows:

HOW TO CALCULATE THE VOLUME OF ACYLINDER

DEFINITION: A three dimensional geometrical shape, that has a circle at each end of a single curved surface.

FIRST, AREA OF A CIRCLE = TT X R ${ }^{2}$ CIRCUMFERENCE = $2 \times$ TT X R

In order to calculate the volume of a cylinder, the height and radius of the circular top /bottom must be known. The following formula is used to calculate the volume.

$$
\pi(\mathrm{pi})=3.14 \quad \mathrm{~V}=\pi r^{2} h
$$

volume $(v)=$ pi x radius $^{2} x$ height

MATHEMATICS - VOLUMES - REVISION CARDS

HOW TO CALCULATE THE VOLUME OF A REGULAR SQUARE PYRAMID

DEFINITION: A Regular Square Pyramid has a square base with triangular sides. The apex (highest point), is in line with the centre of the square base.

CALCULATE THE AREA OF BASE FIRST

$$
\text { AREA OF BASE }=\mathrm{LENGTH}{ }^{2}
$$

AREA OF BASE $=60 \mathrm{~mm} \times 60 \mathrm{~mm}=3600 \mathrm{~mm}^{2}$ THEN APPLY THE FOLLOWING FORMULA

Volume $=\frac{1}{3} \times$ Base \times Height

$$
\mathrm{V}=\frac{1}{3} \times 3600 \mathrm{~mm} \times 100 \mathrm{~mm}
$$

$V=\frac{1}{3} \times 360000 \mathrm{~mm}$
$V=\frac{360000 \mathrm{~mm}}{3}=120000 \mathrm{~mm}^{3}$

60 mm 60mm

HOW TO CALCULATE THE VOLUME OF A CONE

DEFINITION: A cone has one surface with a circular base. The vertex is directly above the centre of the circular base.

If the height (h) is 50 mm and the radius is 40 mm Then:

$$
\begin{aligned}
& v=1 / 3 \pi r^{2} h \\
& v=\frac{1}{3} \times 3.14 \times(40 \times 40) \times 50 \\
& v=\frac{1}{3} \times 251200 \\
& v=\frac{25177}{3}=83733.33 \mathrm{~mm}^{3}
\end{aligned}
$$

HOW TO CALCULATE THE VOLUME

OF A SPHERE
DEFINITION: A sphere is an object that is absolutely symmetrical about it's centre. From any angle it appears to be a circle, but it is a true three dimensional object.

EXAMPLE CALCULATION

$V=4 / 3 \pi r^{3}$

$v=\frac{4}{3} \times \frac{3.14 \times(30 \times 30 \times 30)}{1}$
$v=\frac{4}{3} \times \frac{3.14 \times(27000)}{1}$
$v=\frac{4}{3} \times \frac{84780}{1}$
$v=\frac{339120}{3}$
$v=113040 \mathrm{~mm}^{3}$

MATHEMATICAL SKILLS

VOLUME OF A SPHERE

DESIGN AND TECHNOLOGY
not for sale or redistribution
THIS MATERIAL CANNOT BE EDITED OR PLACED ON ANY OTHER FORM OF MEDIA, INCLUDING POWERPOINTS, INTRANETS, WEBSITES
-

DEFINITION: A sphere is an object that is absolutely symmetrical about it's centre. From any angle it appears to be a circle, but it is a true three dimensional object.

FORMULA

$v=4 / 3 \pi r^{3}$

EXAMPLE CALCULATION - VOLUME OF A SPHERE

$$
\begin{aligned}
& V=4 / 3 \pi r^{3} \\
& v=\frac{4}{3} \times \frac{3.14 \times(30 \times 30 \times 30)}{1} \\
& v=\frac{4}{3} \times \frac{3.14 \times(27000)}{1} \\
& v=\frac{4}{3} \times \frac{84780}{1} \\
& V=\frac{339120}{3} \\
& V=113040 \mathrm{~mm}^{3}
\end{aligned}
$$

FORMULA

$v=4 / 3 \pi r^{3}$

Using the formula shown opposite, calculate the volumes of the following spheres. ($\mathbf{p i}(\mathrm{T})$ is 3.14)

$$
\begin{aligned}
& v=4 / 3 \pi r^{3} \\
& v=\frac{4}{3} \times \frac{3.14 \times(50 \times 50 \times 50)}{1} \\
& v=\frac{4}{3} \times \frac{3.14 \times(125000)}{1} \\
& v=\frac{4}{3} \times \frac{392500}{1} \\
& v=\frac{1570000}{3} \\
& v=523333.33 \mathrm{~mm}^{3}
\end{aligned}
$$

$\mathrm{v}=4 / 3 \pi \mathrm{r}^{3}$

$$
v=\frac{4}{3} \times \frac{3.14 \times(60 \times 60 \times 60)}{1}
$$

$$
v=\frac{4}{3} \times \frac{3.14 \times(216000)}{1}
$$

$$
v=\frac{4}{3} \times \frac{678240}{1}
$$

$$
v=\frac{2712960}{3}
$$

$$
\mathrm{v}=904320 \mathrm{~mm}^{3}
$$

FORMULA
$v=4 / 3 \pi r^{3}$

Using the formula shown opposite, calculate the volumes of the following spheres. ($\mathbf{p i}(\pi)$ is 3.14)

\qquad
\qquad
\qquad
\qquad

FORMULA

$v=4 / 3 \pi r^{3}$

Using the formula shown opposite, calculate the volumes of the following spheres. ($\mathbf{p i}(\Pi)$ is 3.14)

$$
\begin{aligned}
& \mathrm{d}=70 \mathrm{~mm} \text { therefore } \mathrm{r}=35 \mathrm{~mm} \\
& \mathrm{v}=4 / 3 \pi r^{3} \\
& \mathrm{v}=\frac{4}{3} \times \frac{3.14 \times(35 \times 35 \times 35)}{1} \\
& \mathrm{v}=\frac{4}{3} \times \frac{3.14 \times(42875)}{1} \\
& \mathrm{v}=\frac{4}{3} \times \frac{134627.5}{1} \\
& \mathrm{v}=\frac{538510}{3} \\
& \mathrm{v}=\frac{179503.33 \mathrm{~mm}^{3}}{}
\end{aligned}
$$

$$
d=98 \mathrm{~mm} \text { therefore } r=49 \mathrm{~mm}
$$

$$
v=4 / 3 \pi r^{3}
$$

$$
v=\frac{4}{3} \times \frac{3.14 \times(49 \times 49 \times 49)}{1}
$$

$$
v=\frac{4}{3} \times \frac{3.14 \times(117649)}{1}
$$

$$
v=\frac{4}{3} \times \frac{369417.86}{1}
$$

$$
v=\frac{1477671.44}{3}
$$

$$
v=492557.15 \mathrm{~mm}^{3}
$$

FORMULA
$v=4 / 3 \pi r^{3}$

Using the formula shown opposite, calculate the volumes of the following spheres. ($\mathbf{p i}(\pi)$ is 3.14)

\qquad
\qquad
\qquad
\qquad

MATHEMATICAL SKILLS

GEARS, GEAR TRAINS AND COMPOUND GEARS

ASSOCIATED EXAMINATION QUESTIONS

DESIGN AND TECHNOLOGY

NOT FOR SALE OR REDISTRIBUTION

THIS MATERIAL CANNOT BE EDITED OR PLACED ON ANY OTHER FORM OF MEDIA, INCLUDING POWERPOINTS, INTRANETS, WEBSITES

CALCULATING GEAR RATIO (VELOCITY RATIO)

In examinations, one of the first questions will be - to work out the 'gear ratio' (sometimes called velocity ratio). As a guide - always assume that the larger gear revolves one revolution. The number of rotations of the second gear has then to be worked out.

In the example below, the DRIVER has 60 teeth and because it is the largest we say that it revolves once. The DRIVEN gear has 30 teeth. Simply divide 60 teeth by 30 teeth to work out the number of revolutions of the driven gear.
$\frac{\text { Distance moved by Effort }}{\text { Distance moved by Load }}=\frac{60 T(\text { GEAR A) }}{30 T(\text { GEAR B) }}$
$=\frac{1}{2}=\frac{\text { Input movement }}{\text { Output movement }}$
= Driver: Driven
1:2

2A.

DRIVEN
(LOAD)
WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017

3A.

B

$=\frac{3}{1}=\frac{\text { Input movement }}{\text { Output movement }}$
= Driver: Driven
$3: 1$
$\frac{\text { Distance moved by Effort }}{\text { Distance moved by Load }}=\frac{20 T(\text { GEAR A })}{80 T(\operatorname{GEAR~B})}$
$=\frac{4}{1}=\frac{\text { Input movement }}{\text { Output movement }}$
$=\quad$ Driver : Driven
4 : 1
DRIVEN
(LOAD)

CALCULATING GEAR RATIO (VELOCITY RATIO)

In examinations, one of the first questions will be - to work out the 'gear ratio' (sometimes called velocity ratio). As a guide - always assume that the larger gear revolves one revolution. The number of rotations of the second gear has then to be worked out.

CALCULATING REVOLUTIONS PER MINUTE (RPM)

In the example below, the DRIVER gear is larger than the DRIVEN gear. The general rule is - large to small gear means 'multiply' the velocity ratio by the rpm of the first gear. Divide 60 teeth by 30 teeth to find the velocity ratio. Multiply this number (2) by the rpm (120). This gives an answer of 240rpm.

B

75 TEETH

GEAR A	GEAR B
25 teeth	75 teeth
60 rpm	$?$

$$
\begin{aligned}
& \frac{75}{25}=3 \\
= & \frac{60}{3}=20 \mathrm{revs} / \mathrm{min}
\end{aligned}
$$

CALCULATING REVOLUTIONS PER MINUTE (RPM)

B
75 TEETH

GEAR A	GEAR B
25 teeth	75 teeth
60 rpm	

$-=$
$=-\quad$ revs $/ \mathrm{min}$

GEAR A	GEAR B
20 teeth	80 teeth
100 rpm	

$=-\quad$ revs/min

GEAR TRAINS - EXAMPLE QUESTIONS AND ANSWERS

When faced with three gears, the question can be broken down into two parts. First work on Gears A and B. When this has been solved, work on gears B and C.

The diagram above shows a gear train composed of three gears. GearArevolves at 60 revs $/ \mathrm{min}$ in a clockwise direction.
What is the output in revolutions per minute at Gear C?
In what direction does Gear C revolve?

GEAR A	GEAR B	GEAR C
20 teeth	60 teeth	10 teeth
60 rpm	$?$	$?$

First work out the speed at Gear B. $\quad \frac{60}{20}{ }_{\text {teeth }} \frac{B}{A}=3$

$$
=\frac{60 \mathrm{rpm}}{3}=20 \mathrm{revs} / \mathrm{min} \text { at }{ }^{\prime} \mathrm{B} \text { ' }
$$

(Remember B is larger than A therefore, B outputs less revs/min and is slower)

Next, take B and C. C is smaller, therefore, revs/minute will increase and rotation will be faster.

$$
\frac{60}{10}{ }_{\text {teeth }}^{\text {teeth }} \frac{B}{C}=6
$$

20 REVS X $6=120 \mathrm{revs} / \mathrm{min}$ at ' C '
What direction does C revolve?
A is clockwise, B consequently is anti-clockwise and C is therefore clockwise.

GEAR TRAINS - EXAMPLE QUESTIONS

When faced with three gears the question can be broken down into two parts. First work on Gears A and B. When this has been solved work on gears B and C.

(Remember B is larger than A therefore, B outputs less revs/min and is slower)

Next, take B and C. C is smaller, therefore, revs/minute will increase and rotation will be faster.

$$
\mathcal{T}_{\text {teeth }}^{\text {teeth }} \frac{\mathrm{B}}{\mathrm{C}}=
$$

\qquad
What direction does C revolve?
A is clockwise, B consequently is anti-clockwise and C is therefore \qquad

GEAR TRAINS - EXAMPLE QUESTIONS AND ANSWERS

When faced with three gears the question can be broken down into two parts. First work on Gears A and B. When this has been solved work on gears B and C.

The diagram opposite shows a gear train composed of three gears. Gear A revolves at 90 revs/min in a clockwise direction.
What is the output in revolutions per minute at Gear C?
In what direction does Gear C revolve?

GEAR A	GEAR B	GEAR C
30 teeth	90 teeth	15 teeth
90 rpm	$?$	$?$

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS
First work out the speed at Gear B. $\quad \frac{90}{30}{ }_{\text {teeth }}^{\text {teeth }} \frac{B}{A}=3$

$$
=\frac{90 \mathrm{rpm}}{3}=30 \mathrm{revs} / \mathrm{min} \text { at }{ }^{\prime} \mathrm{B} \text { ' }
$$

(Remember B is larger than A therefore, B outputs less revs/min and is slower)

Next, take B and C. C is smaller, therefore, revs/minute will increase and rotation will be faster.

$$
\begin{gathered}
\frac{90}{15} \text { teeth } \frac{\mathrm{B}}{\mathrm{C}}=6 \\
30 \text { REVS } \times 6=180 \mathrm{revs} / \mathrm{min} \text { at ' } \mathrm{C} \text { ' }
\end{gathered}
$$

What direction does C revolve?
A is clockwise, B consequently is anti-clockwise and C is therefore clockwise.

GEAR TRAINS - EXAMPLE QUESTIONS AND ANSWERS

When faced with three gears the question can be broken down into two parts. First work on Gears A and B. When this has been solved work on gears B and C.

The diagram opposite shows a gear train composed of three gears. Gear A revolves at 90 revs/min in a clockwise direction.
What is the output in revolutions per minute at Gear C?
In what direction does Gear C revolve?

GEAR A	GEAR B	GEAR C
30 teeth	90 teeth	15 teeth
90 rpm		

www.technologystudent.com © 2017 V.Ryan © 2017

First work out the speed at Gear B. - teeth $\frac{B}{\text { teeth }}=$

$$
=\underline{90}{ }^{\mathrm{rpm}}=\ldots \mathrm{revs} / \mathrm{min} \text { at ' } \mathrm{B} \text { ' }
$$

(Remember B is larger than A therefore, B outputs less revs/min and is slower)

Next, take B and C. C is smaller, therefore, revs/minute will increase and rotation will be faster.

$$
\begin{gathered}
\text { _Tens }_{\text {teeth }}^{\text {teeth }} \frac{\mathrm{B}}{\mathrm{C}}= \\
\quad=\ldots \quad \mathrm{revs} / \mathrm{min} \text { at 'C' }
\end{gathered}
$$

What direction does C revolve?
A is clockwise, B consequently is anti-clockwise and C is therefore \qquad

COMPOUND GEARS - EXAMPLE QUESTIONS AND ANSWERS

Below is a question regarding 'compound gears'. Gears C and B represent a compound gear as they appear 'fixed' together. When drawn with a compass they have the same centre. Two gears 'fixed' together in this way rotate together and at the same RPM. When answering a question like this split it into two parts. Treat gears A and B as one question AND C and D as the second part.

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/
www.technologystudent.com © 2017 V.Ryan © 2017
This is an example of a "compound gear train". Gear A rotates in a clockwise direction at 30 revs $/ \mathrm{min}$. What is the output in revs/min at D and what is the direction of rotation?

GEAR A	GEAR B	GEAR C	GEAR D
120 teeth	40 teeth	80 teeth	20 teeth

First find revs/min at Gear B.

$$
\begin{aligned}
& \frac{120}{40 \text { teeth } \frac{B}{A}=3} \\
& 30 \mathrm{rpm} \times 3=90 \mathrm{rpm} / \mathrm{min}
\end{aligned}
$$

B is smaller therefore it rotates faster and revs/min increase.
C is fixed to B and therefore, rotates at the same speed.
90 REVS/MIN at C

Next find revs/min at Gear D.

$$
\begin{aligned}
& \frac{80}{20}{ }_{\text {teeth }} \frac{C}{D}=4 \\
& 90 \mathrm{rpm}(\text { at } \mathrm{C}) \times 4=360 \mathrm{rpm} / \mathrm{min}
\end{aligned}
$$

D is smaller than C, therefore rotates faster (increased revs $/ \mathrm{min}$).
A revolves in a clockwise direction, B is therefore anti-clockwise, C is fixed to B and is also anti-clockwise, which means D revolves in a clockwise direction.

COMPOUND GEARS - EXAMPLE QUESTIONS AND ANSWERS

Below is a question regarding 'compound gears'. Gears C and B represent a compound gear as they appear 'fixed' together. When drawn with a compass they have the same centre. Two gears 'fixed' together in this way rotate together and at the same RPM. When answering a question like this split it into two parts. Treat gears A and B as one question AND C and D as the second part.

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS https://www.facebook.com/groups/254963448192823/ www.technologystudent.com © 2017 V.Ryan © 2017
This is an example of a "compound gear train". Gear A rotates in a clockwise direction at $30 \mathrm{revs} / \mathrm{min}$. What is the output in revs/min at D and what is the direction of rotation?

GEAR A	GEAR B	GEAR C	GEAR D
120 teeth	40 teeth	80 teeth	20 teeth

First find revs/min at Gear B.

$$
\begin{aligned}
& __{\text {teeth }}^{\text {teeth }} \frac{B}{A}= \\
& \ldots \quad \mathrm{rpm} X __\quad \mathrm{rpm} / \mathrm{min}
\end{aligned}
$$

B is smaller therefore it rotates faster and revs/min increase.
C is fixed to B and therefore, rotates at the same speed.
_ REVS/MIN at C

Next find revs/min at Gear D.

$$
\begin{aligned}
__{\text {teeth }}^{\text {teeth }} \frac{C_{1}}{D} & = \\
\mathrm{rpm} & (\text { at } \mathrm{C}) X_{-} \\
& =\quad \mathrm{rpm} / \mathrm{min}
\end{aligned}
$$

D is smaller than C, therefore rotates faster (increased revs $/ \mathrm{min}$).
A revolves in a clockwise direction, B is therefore anti-clockwise, C is fixed to B and is also anti-clockwise, which means D revolves in a \qquad direction.

COMPOUND GEARS- EXAMPLE QUESTIONS AND ANSWERS

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS

Try the following question:

What is the revs/min at gear D and what is its direction?

