

MATHS IN ENGINEERING SUPPLEMENTARY BOOK ONE

YIELD STRESS STRAIN YOUNG'S MODULUS

FOR ALL YOUR ENGINEER REVISION AND UNDERSTANDING VISIT TECHNOLOGYSTUDENT.COM

https://www.facebook.com/groups/254963448192823/

WORLD ASSOCIATION OF TECHNOLOGY TEACHERS

www.technologystudent.com © 2017 V.Rvan © 2017

YIELD STRESS - MATHEMATIC APPLICATION

$$\frac{FORMULA}{\sigma} = F/A$$
$$STRESS = \frac{FORCE}{AREA}$$

1. A sample of steel (from an engineering company) is given a stress test to assess its <u>yield stress</u>.

The steel is a 20mm square section. The sample begins to yield at 30 000 Newtons.

What is the yield stress?

2. A second sample of steel (from the same engineering company), is given a stress test to assess its <u>yield stress</u>.

The steel is a 40mm square section. The sample begins to yield at 40 000 Newtons.

What is the yield stress?

STRESS = $\frac{FORCE}{SECTION AREA}$ $\sigma = \frac{F}{A}$

STRESS = <u>30 000 N</u> 20 mm X 20 mm

STRESS = $\frac{30\ 000}{400 \text{ mm}^2}$

STRESS = 75 N/mm^2

STRESS = FORCE SECTION AREA $\sigma = \frac{F}{A}$ STRESS = $\frac{40\ 000\ N}{40\ mm\ X\ 40\ mm}$

 $STRESS = \frac{40\ 000}{1600 \text{ mm}^2}$

STRESS = 25 N/mm²

YIELD STRESS - MATHEMATIC APPLICATION - QUESTIONS

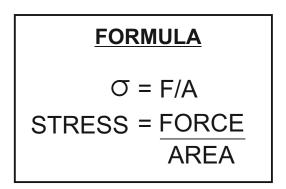
FORMULA

 $\sigma = F/A$ STRESS = $\frac{FORCE}{AREA}$

1. A sample of steel (from an engineering company) is given a stress test to assess its <u>yield stress</u>.

The steel is a 20mm square section. The sample begins to yield at 30 000 Newtons.

What is the yield stress?


2. A second sample of steel (from the same engineering company), is given a stress test to assess its <u>yield stress</u>.

The steel is a 40mm square section. The sample begins to yield at 40 000 Newtons.

What is the yield stress?

STRESS = $\frac{FORCE}{SECTION AREA}$ $\sigma = \frac{F}{A}$ STRESS = $\frac{FORCE}{SECTION AREA}$ $\sigma = \frac{F}{A}$

YIELD STRESS - MATHEMATIC APPLICATION

 A civil engineer, designing a bridge, has submitted a sample of steel to your materials testing facility. It is to be given a stress test to establish its <u>yield stress</u>.

The steel is a 50mm square section. The sample begins to yield at 50 000 Newtons.

What is the yield stress?

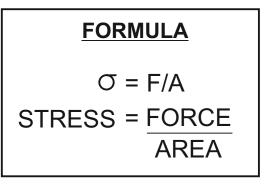
4. A model engineer, is making a component for a model steam train. He has submitted a sample of brass to your materials testing facility. It is to be given a stress test to establish its <u>yield stress</u>.

The steel is a 8mm square section. The sample begins to yield at 1000 Newtons.

What is the yield stress?

STRESS = $\frac{FORCE}{SECTION AREA}$ $\sigma = \frac{F}{A}$

STRESS = <u>50 000 N</u> 50 mm X 50 mm


STRESS = $\frac{50\ 000}{500\text{mm}^2}$

STRESS = 100 N/mm^2

STRESS = <u>FORCE</u> SECTION AREA $\sigma = \frac{F}{A}$ STRESS = <u>1000 N</u> 8 mm X 8 mm STRESS = <u>1000</u> <u>64mm²</u>

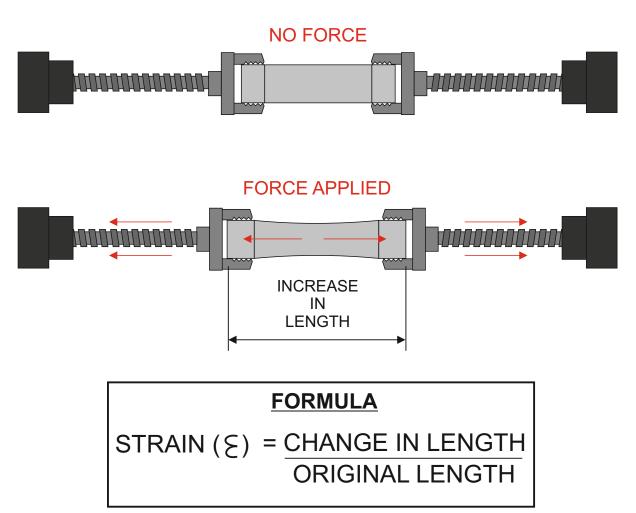
STRESS = 15.63 N/mm^2

YIELD STRESS - MATHEMATIC APPLICATION - QUESTIONS

3. A civil engineer, designing a bridge, has submitted a sample of steel to your materials testing facility. It is to be given a stress test to establish its <u>yield stress</u>.

The steel is a 50mm square section. The sample begins to yield at 50 000 Newtons.

What is the yield stress?


STRESS = \underline{FORCE} SECTION AREA $\sigma = \underline{F}$ 4. A model engineer, is making a component for a model steam train. He has submitted a sample of brass to your materials testing facility. It is to be given a stress test to establish its <u>yield stress</u>.

The steel is a 8mm square section. The sample begins to yield at 1000 Newtons.

What is the yield stress?

STRESS = \underline{FORCE} SECTION AREA $\sigma = \underline{F}$

STRAIN

The sample metal (above) being tested, is 200mm in length when no force is applied (no load). However, when force / a load is applied it stretches to a length of 210mm. What is the 'strain'.

STRAIN (
$$\xi$$
) = CHANGE IN LENGTH
ORIGINAL LENGTH
 ξ = 210mm - 200mm
200mm
 ξ = 10mm
200mm
 ξ = 0.05 or 5.0 x 10^{-2}

FORMULA

$$\frac{\text{STRAIN}(\xi) = \frac{\text{CHANGE IN LENGTH}}{\text{ORIGINAL LENGTH}}$$

1. An Engineers Research Company has submitted a sample for strain testing, to your materials testing facility. The sample metal being tested, is 500mm in length when no force is applied (no load). However, when force / a load is applied it stretches to a length of 520mm. What is the 'strain'.

STRAIN (E)	=	CHANGE IN LENGTH ORIGINAL LENGTH
3	=	520mm - 500mm 500 mm
5	=	20mm 500mm
3	=	0.04 or 4.0×10^{-2}

2. The Engineers Research Company has submitted a second sample for strain testing. The sample metal being tested, is 800mm in length when no force is applied (no load). However, when force / a load is applied it stretches to a length of 840mm. What is the 'strain'.

STRAIN (E)	=	CHANGE IN LENGTH ORIGINAL LENGTH
5	=	840mm - 800mm 800mm
5	=	40mm 800mm
3	=	0.05 or 5×10^{-2}

STRAIN - MATHEMATIC APPLICATION - QUESTIONS

FORMULA

 $\frac{\text{STRAIN}(\xi) = \frac{\text{CHANGE IN LENGTH}}{\text{ORIGINAL LENGTH}}$

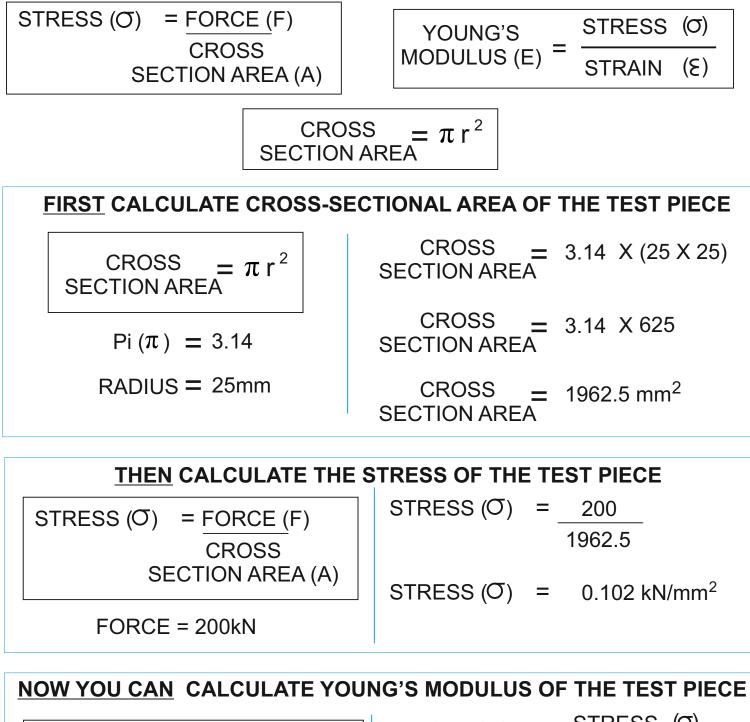
1. An Engineers Research Company has submitted a sample for strain testing, to your materials testing facility. The sample metal being tested, is 500mm in length when no force is applied (no load). However, when force / a load is applied it stretches to a length of 520mm. What is the 'strain'.

 $\frac{\text{STRAIN}(\xi) = \frac{\text{CHANGE IN LENGTH}}{\text{ORIGINAL LENGTH}}$

2. The Engineers Research Company has submitted a second sample for strain testing. The sample metal being tested, is 800mm in length when no force is applied (no load). However, when force / a load is applied it stretches to a length of 840mm. What is the 'strain'.

 $\frac{\text{STRAIN}(\xi) = \frac{\text{CHANGE IN LENGTH}}{\text{ORIGINAL LENGTH}}$

YOUNG'S MODULUS

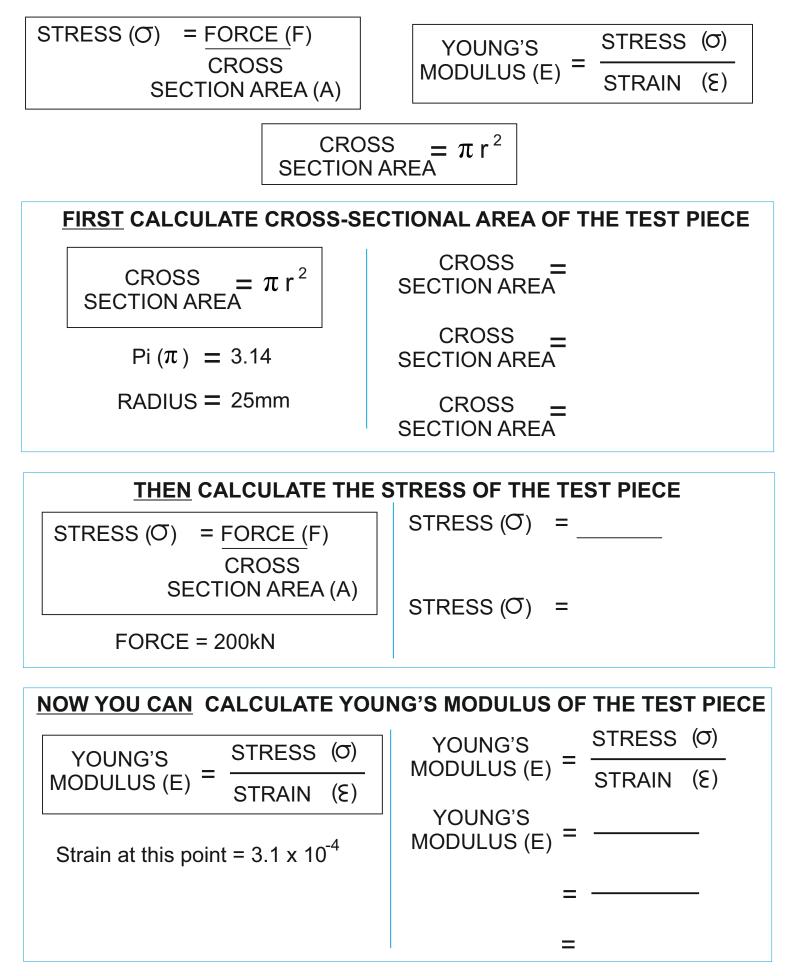

Young's Modulus, is the direct relationship between the 'stress' and 'strain' of a material (the ratio of 'stress' to 'strain'). It is shown by the formula below and measures the 'stiffness' of a solid material.

Young's Modulus (E) =
$$\frac{\text{stress}(\sigma)}{\text{strain}(\epsilon)}$$

CALCULATING YOUNG'S MODULUS

1. A cylindrical test piece of nylon has been sent to your Materials Testing Laboratory. You have been asked to calculate the Young's Modulus of the test piece.

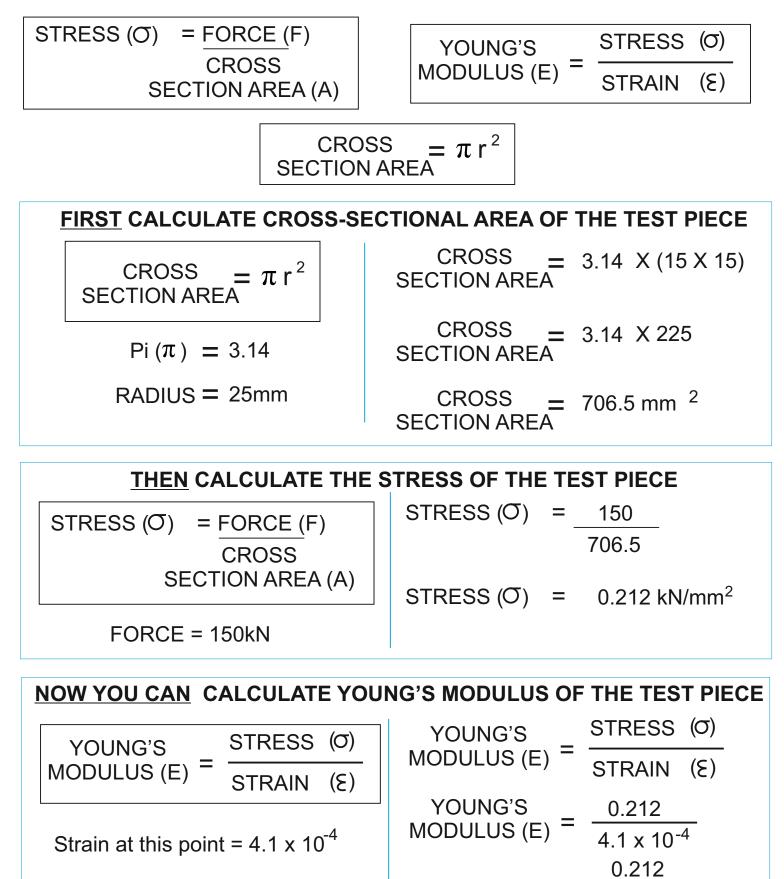
Radius = 25mm Force applied = 200 kN and strain at this point = 3.1×10^{-4}



YOUNG'S STRESS (O)	YOUNG'S _ STRESS (O)
1000000000000000000000000000000000000	MODULUS(E) - STRAIN(E)
	YOUNG'S _ 0.102
Strain at this point = 3.1×10^{-4}	MODULUS (E) $- \frac{1}{3.1 \times 10^{-4}}$
	0.102
	0.00031
	= 329kN/mm ²

CALCULATING YOUNG'S MODULUS - QUESTION

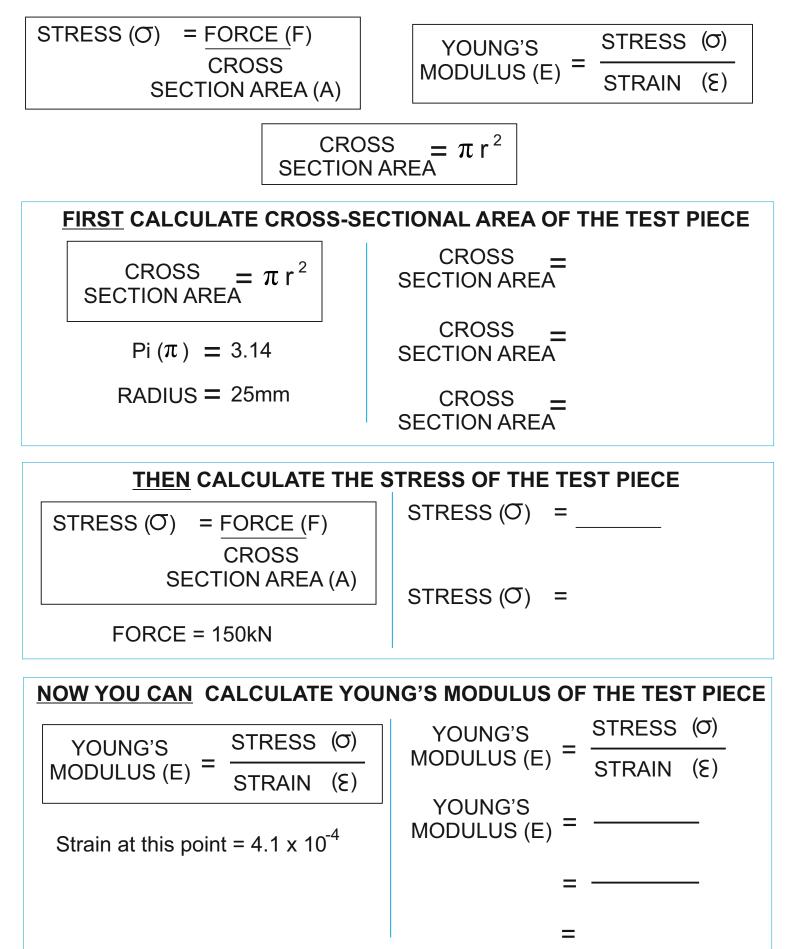
1. A cylindrical test piece of nylon has been sent to your Materials Testing Laboratory. You have been asked to calculate the Young's Modulus of the test piece.


Radius = 25mm Force applied = 200 kN and strain at this point = 3.1×10^{-4}

CALCULATING YOUNG'S MODULUS

2. An automobile company has sent a sample of steel, to your Materials Testing Laboratory. You have been asked to calculate the Young's Modulus of the test piece.

Radius = 15mm Force applied = 150 kN and strain at this point = 4.1×10^{-4}


0.00041

= 517.07 kN/mm²

CALCULATING YOUNG'S MODULUS

2. An automobile company has sent a sample of steel, to your Materials Testing Laboratory. You have been asked to calculate the Young's Modulus of the test piece.

Radius = 15mm Force applied = 150 kN and strain at this point = 4.1×10^{-4}

